Table of Contents
1. Linh kiện cần thiết làm mạch LM35 giao tiếp Atmega
1.1 Vi điều khiển AVR trong LM35 giao tiếp Atmega
a. Giới thiệu
Atmega16 là một chíp vi điều khiển được sản xuất bời hãng Atmel thuộc họ MegaAVR. Atmega16 là một bộ vi điều khiển 8 bit dựa trên kiến trúc RISC bộ nhớ chương trình 16KB ISP flash có thể ghi xóa hàng nghìn lần, 512B EEPROM, một bộ nhớ RAM vô cùng lớn trong thế giới vi xử lý 8 bit (1KB SRAM) Với 32 chân có thể sử dụng cho các kết nối vào hoặc ra i/O, 32 thanh ghi, 3 bộ timer/counter có thể lập trình, có các gắt nội và ngoại (2 lệnh trên một vector ngắt), giao thức truyền thông nối tiếp USART, SPI, I2C. Ngoài ra có thể sử dụng bộ biến đổi số tương tự 10 bít (ADC/DAC) mở rộng tới 8 kênh, khả năng lập trình được watchdog timer, hoạt động với 5 chế độ nguồn, có thể sử dụng tới 6 kênh điều chế độ rộng xung (PWM), hỗ trợ bootloader. Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, …b. Chức năng của Atmega:
- PORTA: Các chân từ 33 đến 40 thuộc PORTA. Nó hoạt động giống như đầu vào analog cho bộ chuyển đổi A / D. Tuy nhiên, trong trường hợp không có bộ chuyển đổi A / D, PORTA được sử dụng làm cổng I / O hai chiều 8 bit. Nó đi kèm với điện trở kéo bên trong.
- PORTB: Các chân từ 1 đến 8 thuộc về PORTB. Đây là các chân hai chiều I / O. Cổng này cũng bao gồm các điện trở kéo lên bên trong.
- PORTC: PORTC là cổng I / O hai chiều bao gồm 8 chân. Chân từ 22 đến 29 thuộc về cổng này, tương tự như các cổng khác, nó đi kèm với điện trở kéo bên trong.
- PORTD: Chân từ 14 đến 21 thuộc về cổng này. Đây là cổng hai chiều trong đó mỗi chân có thể được sử dụng làm chân đầu vào hoặc đầu ra. Tuy nhiên, có các tính năng bổ sung liên quan đến cổng này như ngắt, giao tiếp nối tiếp, bộ hẹn giờ và PWM.
Các chức năng khác
- Reset: Chân 9 là chân reset mức thấp đang hoạt động. Xung mức thấp dài hơn độ dài xung tối thiểu sẽ tạo ra reset. Các xung ngắn không có khả năng tạo ra reset.
- VCC: Chân 10 là chân cấp nguồn cho bộ điều khiển này. Nguồn điện của cần phải có 5 V để đặt bộ điều khiển này trong điều kiện đang chạy.
- GND: Chân 11 là chân nối đất.
- AREF: Chân 32 là chân tham chiếu tương tự chủ yếu được sử dụng cho bộ chuyển đổi A / D .
- AVCC: Chân 30 là AVCC là chân điện áp cung cấp cho PORTA và ADC. Nó được kết nối với VCC thông qua bộ lọc thông thấp khi có ADC. Tuy nhiên, trong trường hợp không có ADC, AVCC được kết nối bên ngoài với VCC.
- Chân 12 & 13: Một bộ dao động tinh thể được kết nối với các chân này. Atmega16 hoạt động ở tần số bên trong 1MHZ; bộ dao động được thêm vào để tạo ra xung clock và tần số cao.
c.Thông số kỹ thuật Atmega (Dip)
Datasheets | Atmega16 |
Standard Package | 27 |
Category | Integrated Circuits (ICs) |
Family | Embedded – Atmel |
Series | Atmega |
Packaging | Tube |
Core Processor | AVR |
Core Size | 8-Bit |
Speed | 16MHz |
Connectivity | I²C, SPI, UART / USART, USB |
Peripherals | Brown-out Detec t/ Reset, HLVD, POR, PWM, WDT |
Number of I /O | 32 |
Program Memory Size | 16KB |
Program Memory Type | FLASH |
EEPROM Size | 512B |
RAM Size | 1K |
Voltage – Supply (Vcc/Vdd) | 4.2 V ~ 5.5 V |
Data Converters | A/D 8 x 10bit |
Oscillator Type | Internal |
Operating Temperature | -40°C ~ 85°C |
Package / Case | 28-SOIC (0.295″, 7.50mm Width) |
Other Names | Atmega16 |
d. Power
- 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
- GND: Là chân mang điện cực âm trên board.
- IOREF: Điệp áp hoạt động của vi điều khiển trên AVR và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.
e.Bộ nhớ
Vi điều khiển ATmega:- 16 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
- 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
- 512B cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.
f. Kiến trúc của Atmega16
Kiến trúc của Atmega16 dựa trên Kiến trúc Harvard và đi kèm với các bus và bộ nhớ riêng biệt. Các lệnh được lưu trữ trong bộ nhớ chương trình.- CPU
- ROM
- RAM
EEPROM
- Ngắt
- Module I / O analog và kỹ thuật số
Bộ định thời / Bộ đếm
- Watchdog timer
- Giao tiếp nối tiếp
1.2 Cảm biến Nhiệt độ LM35 giao tiếp Atmega
a. Giới thiệu
LM35 giao tiếp Atmega có dải đo từ 0 Độ đến 150 độ C. LM35 là cảm biến tiêu hao điện năng thấp sử dụng điện áp 5V. Cảm biến gồm có 3 chân, 2 chân nguồn, 1 chân tín hiệu ra dạng Analog. Chân dữ liệu của IC cảm biến LM35 là chân ngõ ra điện áp dạng tuyến tính. Chân số 2 cảm biến xuất ra cứ 1mV = 0.1°C (10mV = 1°C). Để lấy dữ liệu ở dạng °C chỉ cần lấy điện áp trên chân OUT đem chia cho 10. Chân 1 cấp điện áp 5V, chân 3 cấp GND, chân 2 là chân OUTPUT dữ liệu dạng điện áp LM35 là một cảm biến nhiệt độ tương tự, điện áp ở đầu ra của cảm biến tỷ lệ với nhiệt độ tức thời và có thể dễ dàng được xử lý để có được giá trị nhiệt độ bằng oC.b. Thông số kỹ thuật lm35 giao tiếp Atmega
- Điện áp hoạt động: 4~20VDC
- Công suất tiêu thụ: khoảng 60uA
- Khoảng đo: -55°C đến 150°C
- Điện áp tuyến tính theo nhiệt độ: 10mV/°C
- Sai số: 0.25°C
- Kiểu chân: TO92
- Kích thước: 4.3 × 4.3mm
c. Nguyên lý hoạt động của cảm biến LM35 giao tiếp Atmega
Cảm biến LM35 hoạt động bằng cách cho ra một giá trị điện áp nhất định tại chân VOUT (chân giữa) ứng với mỗi mức nhiệt độ. Như vậy, bằng cách đưa vào chân bên trái của cảm biến LM35 điện áp 5V, chân phải nối đất, đo hiệu điện thế ở chân giữa, bạn sẽ có được nhiệt độ (0-100ºC) tương ứng với điện áp đo được. Vì điện áp ngõ ra của cảm biến tương đối nhỏ nên thông thường trong các mạch ứng dụng thực tế, chúng ta thường dùng Op-Amp để khuếch đại điện áp ngõ ra này.d. Cách tính toán giao tiếp
- Thiết kế mạch.
- Cấp nguồn cho cảm biến với điện áp từ 4V đến 30V. Chân GND được nối đất.
- Kết nối chân VOUT với đầu vào bộ chuyển đổi tương tự sang số hay vi điều khiển.
- Lấy mẫu đọc ADC để xác định điện áp đầu ra VOUT.
- Chuyển đổi điện áp thành nhiệt độ.
e. Các dạng ngoài thực tế
LM35 có thể được sử dụng một trong hai cấu hình mạch như hình bên dưới. Cả hai đều mang lại kết quả khác nhau. Trong cấu hình mạch phía bên trái, cảm biến chỉ có thể đo nhiệt độ dương từ 2 oC đến 150 oC. Theo cấu hình mạch này, chúng ta chỉ cần cấp nguồn cho LM35 và kết nối đầu ra trực tiếp với bộ chuyển đổi tương tự sang số. Trong cấu hình mạch thứ hai, chúng ta có thể đo nhiệt độ toàn dải từ -55 oC đến 150 oC. Cấu hình mạch này hơi phức tạp nhưng mang lại kết quả cao. Trong trường hợp này, chúng ta phải kết nối một điện trở bên ngoài (R1) để chuyển mức điện áp âm lên dương. Giá trị điện trở bên ngoài có thể được tính toán theo công thức ghi bên dưới cấu hình mạch. Mặc dù cấu hình mạch đầu tiên không cần điện trở ở phía đầu ra nhưng tôi khuyên bạn nên kết nối điện trở 80 kΩ đến 100 kΩ giữa chân VOUT và chân GND. Khi tôi thực hiện một số thí nghiệm, tôi nhận thấy rằng các số đọc bị dao động và ngõ ra VOUT có hiện tượng thả nổi. Vì vậy, một điện trở giữa VOUT và GND sẽ cố định chân VOUT ở mức thấp và ngăn không cho chân này bị thả nổi. Các thông số về độ chính xác cho cả hai cấu hình mạch là khác nhau. Mức độ chính xác trung bình là ± 1 oC cho cả hai cấu hình. Nhưng mức độ chính xác giảm đối với khoảng nhiệt độ từ 2 oC đến 25 oC.f. Ứng dụng của cảm biến LM35 giao tiếp Atmega
Cảm biến nhiệt độ LM35 phù hợp cho các ứng dụng:- Học tập nghiên cứu
- Đo nhiệt độ của một môi trường cụ thể
- Giám sát nhiệt độ trong hệ thống HVAC
- Kiểm tra nhiệt độ pin
1.3 LCD1602 mạch LM35 giao tiếp Atmega
Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án. b. Thông số kỹ thuật
Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:
- Điện áp hoạt động là 5 V.
- Kích thước: 80 x 36 x 12.5 mm
- Chữ đen, nền xanh lá
- Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
- Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
- Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
- Có thể được điều khiển với 6 dây tín hiệu
- Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.
c. Sơ đồ chân LCD
Số chân | Ký hiệu chân | Mô tả chân |
1 | Vss | Cấp điện 0v |
2 | Vcc | Cấp điện 5v |
3 | V0 | Chỉnh độ tương phản |
4 | RS | Lựa chọn thanh ghi địa chỉ hay dữ liệu |
5 | RW | Lựa chọn thanh ghi Đọc hay Viết |
6 | EN | Cho phép xuất dữ liệu |
7 | D0 | Đường truyền dữ liệu 0 |
8 | D1 | Đường truyền dữ liệu 1 |
9 | D2 | Đường truyền dữ liệu 2 |
10 | D3 | Đường truyền dữ liệu 3 |
11 | D4 | Đường truyền dữ liệu 4 |
12 | D5 | Đường truyền dữ liệu 5 |
13 | D6 | Đường truyền dữ liệu 6 |
14 | D7 | Đường truyền dữ liệu 7 |
15 | A | Chân dương đèn màn hình |
16 | K | Chân âm đèn màn hình |
- Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
- Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
- Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.
d. Địa chỉ ba vùng nhớ
- Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
- Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
- Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
- Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.
e. Các lệnh điều khiển của LCD
- Lệnh thiết lập chức năng giao tiếp “Function set”:
- Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
- Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
- Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
- Các bit cao còn lại là hằng số không đổi.
Lệnh xoá màn hình “Clear Display”: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.
- Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home”: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
- Lệnh thiết lập lối vào “Entry mode set”: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
- Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
- Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
Lệnh điều khiển con trỏ hiển thị “Display Control”:
- Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
- Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
- Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
- Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
- Lệnh di chuyển con trỏ “Cursor /Display Shift”: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển
- Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
- Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
- Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
- Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr”: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
- Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr”: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
- Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.
f. Bảng mã ASCII sử dụng cho LCD
g. Bảng địa chỉ cho LCD
2. Hướng dẫn đồ án nhiệt độ LM35 giao tiếp Atmega hiển thị LCD1602
Phần này chưa được chia sẻ.
LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.
Phần cứng
Phần mềm
#include<LiquidCrystal.h>
LiquidCrystal lcd(2, 3, 4, 5, 6, 7); //(RS, E, D4, D5, D6, D7)
int ar = 0, v = 0, t = 0;
char y = 223;
void setup() {
lcd.begin(16, 2);
}
void loop() {
ar = analogRead(A0);
delay(100);
// how to convert analog to digital see here: https://pijaeducation.com/adc-in-arduino/
v = ar * 4.887;
t = v / 10;
lcd.setCursor(0, 0);
lcd.print("AR:");
lcd.println(ar);
lcd.setCursor(8, 0);
lcd.print("mV:");
lcd.println(v);
lcd.setCursor(0, 1);
lcd.print("Temperature:");
lcd.print(t);
lcd.print(y);
delay(1000);
lcd.clear();
}
3. Hoạt động của mạch LM35 giao tiếp Atmega
Khi cấp điện hệ thống hoạt động, vi điều khiển atmega hiển thị thông tin ban đầu. Lúc này vi điều khiển chờ tín hiệu từ cảm biến nhiệt độ LM35 đưa vào từ chân ADC. Khi nhận tín hiệu vi điều khiển tính toán tính toán, xử lý dữ liệu sau đó gửi giá trị nhiệt độ ra màn hình LCD1602 để hiển thị thông tin đã được lập trình.4. Cụ thể hoạt động của mạch LM35 giao tiếp Atmega các bạn xem video:
Ngoài ra còn nhiều Phần và các môn khác
Đồ án điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 1 Mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 2 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Vi xử lý, Lập trình vi điều khiển Pic – 8051 – Avr – Phần 4 Tổng hợp File ĐỒ ÁN Điện tử cơ bản Tổng hợp File ĐỒ ÁN Viễn thông Tổng hợp File ĐỒ ÁN PLC Tổng hợp File ĐỒ ÁN Cung cấp điện
Sẽ còn các phần khác nữa nhé.
Chúc các bạn thành công…!!!