LM35, Đọc nhiệt độ điều khiển tốc độ quạt dùng pic16f877a

cam-bien-nhiet-do-lm35-giao-tiep-pic16f-hien-thi-lcd1602
LM35  có dải đo từ 0 Độ đến 150 độ C. LM35 là cảm biến tiêu hao điện năng thấp sử dụng điện áp 5V. Cảm biến gồm có 3 chân, 2 chân nguồn, 1 chân tín hiệu ra dạng Analog. Chân dữ liệu của IC cảm biến LM35 là chân ngõ ra điện áp dạng tuyến tính. Chân số 2 cảm biến xuất ra cứ 1mV = 0.1°C (10mV = 1°C). Để lấy dữ liệu ở dạng °C chỉ cần lấy điện áp trên chân OUT đem chia cho 10. Chân 1 cấp điện áp 5V, chân 3 cấp GND, chân 2 là chân OUTPUT dữ liệu dạng điện áp LM35 là một cảm biến nhiệt độ tương tự, điện áp ở đầu ra của cảm biến tỷ lệ với nhiệt độ tức thời và có thể dễ dàng được xử lý để có được giá trị nhiệt độ bằng oC.  
Liên hệ làm Đồ án và Mạch điện tử Phone : 0967.551.477 Zalo    : 0967.551.477 FB      : Huỳnh Nhật Tùng Email : dientunhattung@gmail.com Địa Chỉ: 171/25 Lê Văn Thọ, P8, Gò Vấp, Tp HCM Chi tiết: Nhận làm mạch và đồ án Điện tử  

Table of Contents

1. Linh kiện cần thiết cho đề tài điều khiển quạt bằng nhiệt độ lm35

1.1 Vi điều khiển Pic16F877A trong đề tài đo nhiệt độ lm35 điều khiển quạt

a. Giới thiệu

  • PIC là một họ vi điều khiển RISC được sản xuất bởi công ty Microchip Technology.
  • Dòng PIC đầu tiên là PIC1650 sau đó phát triển lên nhiều dòng khác nhau như:
  • Pic10F
  • Pic12F
  • Pic16F
  • Pic18F
  • Pic24F
  • Pic32F
Vi điều khiển Pic16f877a cắm và dán Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, … các ứng dụng của vi điều khiển

b. Đặc điểm thực thi tốc độ cao CPU RISC là:

  • Có 35 lệnh đơn.
  • Thời gian thực hiện tất cả các lệnh là 1 chu kì máy, ngoại trừ lệnh rẽ nhánh là 2.
  • Tốc độ hoạt động: + Ngõ vào xung clock có tần số 20MHz. + Chu kì lệnh thực hiện lệnh 200ns.
  • Có nhiều nguồn ngắt.
  • Có 3 kiểu định địa chỉ trực tiếp, gián tiếp và tức thời.

c. Cấu trúc đặc biệt của vi điều khiển

  • Bộ dao động nội chính xác + Sai số ± 1% + Có thể lựa chọn tần số từ 31 kHz đến 8 Mhz bằng phần mềm. + Cộng hưởng bằng phần mềm. + Chế độ bắt đầu 2 cấp tốc độ. + Mạch phát hiện hỏng dao động thạch anh cho các ứng dụng quan trọng. + Có chuyển mạch nguồn xung clock trong quá trình hoạt động để tiết kiệm công suất.
  • Có chế độ ngủ để tiết kiệm công suất.
  • Dãy điện áp hoạt động rộng từ 2V đến 5,5V.
  • Tầm nhiệt độ làm việc theo chuẩn công nghiệp.
  • Có mạch reset khi có điện (Power On Reset – POR).
  • Có bộ định thời chờ ổn định điện áp khi mới có điện (Power up Timer – PWRT) và bộ định thời chờ dao động hoạt động ổn định khi mới cấp điện (Oscillator Startup Timer – OST).
  • Có mạch tự động reset khi phát hiện nguồn điện cấp bị sụt giảm, cho phép lựa chọn bằng phần mềm (Brown out Reset – BOR).
  •  Có bộ định thời giám sát (Watchdog Timer – WDT) dùng dao động trong chip cho phép bằng phần mềm (có thể định thời lên đến 268 giây).
  • Đa hợp ngõ vào reset với ngõ vào có điện trở kéo lên.
  • Có bảo vệ code đã lập trình.
  • Bộ nhớ Flash cho phép xóa và lập trình 100,000 lần.
  • Bộ nhớ Eeprom cho phép xóa và lập trình 1,000,000 lần và có thể tồn tại trên 40 năm.
  • Cho phép đọc/ghi bộ nhớ chương trình khi mạch hoạt động.
  • Có tích hợp mạch gỡ rối.

d. Cấu trúc nguồn công suất thấp

  •  Chế độ chờ: dòng tiêu tán khoảng 50nA, sử dụng nguồn 2V.
  • Dòng hoạt động. + 11µA ở tần số hoạt động 32kHz, sử dụng nguồn 2V. + 220µA ở tần số hoạt động 4MHz, sử dụng nguồn 2V.
  • Bộ định thời Watchdog Timer khi hoạt động tiêu thụ 1,4µA, điện áp 2V.

e. Cấu trúc ngoại vi

  • Có 35 chân I/O cho phép lựa chọn hướng độc lập: + Mỗi ngõ ra có thể nhận/cấp dòng lớn khoảng 25mA nên có thể trực tiếp điều khiển led + Có các port báo ngắt khi có thay đổi mức logic. + Có các port có điện trở kéo lên bên trong có thể lập trình. + Có ngõ vào báo thức khỏi chế độ công suất cực thấp.
  • Có module so sánh tương tự: + Có 2 bộ so sánh điện áp tương tự + Có module nguồn điện áp tham chiếu có thể lập trình. + Có nguồn điện áp tham chiếu cố định có giá trị bằng 0,6V. + Có các ngõ vào và các ngõ ra của bộ so sánh điện áp. + Có chế độ chốt SR.
  • Có bộ chuyển đổi tương tự sang số: Có 14 bộ chuyển đổi tương tự với độ phân giải 10 bit.
  • Có timer0: 8 bit hoạt động định thời/đếm xung ngoại có bộ chia trước có thể lập trình.
  • Có timer1: + 16 bit hoạt động định thời/đếm xung ngoại có bộ chia trước có thể lập trình. + Có ngõ vào cổng của timer1 để có thể điều khiển timer1 đếm từ tín hiệu bên ngoài. + Có bộ dao động công suất thấp có tần số 32kHz.
  • Có timer2: 8 bit hoạt động định thời với thanh ghi chu kỳ, có bộ chia trước và chia sau.
  • Có module capture, compare và điều chế xung PWM+ nâng cao + Có bộ capture 16 bit có thể đếm được xung với độ phân giải cao nhất là 12,5ns. + Có bộ điều chế xung PWM với số kênh ngõ ra là 1, 2 hoặc 4, có thể lập trình với tần số lớn nhất là 20kHz. + Có ngõ ra PWM điều khiển lái.
  • Có module capture, compare và điều chế xung PWM + Có bộ capture 16 bit có thể đếm được xung với chu kỳ cao nhất là 12,5ns. + Có bộ so sánh 16 bit có thể so sánh xung đếm với chu kỳ lớn nhất là 200ns + Có bộ điều chế xung PWM có thể lập trình với tần số lớn nhất là 20kHz.
  • Có thể lập trình trên bo ISP thông qua 2 chân.
  • Có module truyền dữ liệu nối tiếp đồng bộ MSSP hổ trợ chuẩn truyền 3 dây SPI, chuẩn I2C ở 2 chế độ chủ và tớ.

f. Cấu trúc của vi điều khiển

cấu hình của vi điều khiển pic Các khối bên trong vi điều khiển bao gồm:
  • Có khối thanh ghi định cấu hình cho vi điều khiển.
  • Có khối bộ nhớ chương trình có nhiều dung lượng cho 5 loại khác nhau.
  • Có khối bộ nhớ ngăn xếp 8 cấp (8 level stack).
  • Có khối bộ nhớ Ram cùng với thanh ghi FSR để tính toán tạo địa chỉ cho 2 cách truy xuất gián tiếp và trực tiếp.
  • Có thanh ghi lệnh (Instruction register) dùng để lưu mã lệnh nhận về từ bộ nhớ chương trình.

 g. Cấu hình bên trong của vi điều khiển

cấu hình bên trong của vi điều khiển
  • Có thanh ghi trạng thái (status register) cho biết trạng thái sau khi tính toán của khối ALU.
  • Có thanh ghi FSR.
  • Có khối ALU cùng với thanh ghi working hay thanh ghi A để xử lý dữ liệu.
  • Có khối giải mã lệnh và điều khiển (Instruction Decode and Control).
  • Có khối dao động nội (Internal Oscillator Block).
  • Có khối dao động kết nối với 2 ngõ vào OSC1 và OSC2 để tạo dao động.
  • Có khối các bộ định thời khi cấp điện PUT, có bộ định thời chờ dao động ổn định, có mạch reset khi có điện, có bộ định thời giám sát watchdog, có mạch reset khi phát hiện sụt giảm nguồn.
  • Có khối bộ dao động cho timer1 có tần số 32kHz kết nối với 2 ngõ vào T1OSI và T1OSO.
  • Có khối CCP2 và ECCP.
  • Có khối mạch gỡ rối (In-Circuit Debugger IDC).
  • Có khối timer0 với ngõ vào xung đếm từ bên ngoài là T0CKI.
  • Có khối truyền dữ liệu đồng bộ/bất đồng bộ nâng cao.
  • Có khối truyền dữ liệu đồng bộ MSSP cho SPI và I2C.
  • Có khối bộ nhớ Eeprom 256 byte và thanh ghi quản lý địa chỉ EEADDR và thanh ghi dữ liệu EEDATA.
  • Có khối chuyển đổi tín hiệu tương tự sang số ADC.
  • Có khối 2 bộ so sánh với nhiều ngõ vào ra và điện áp tham chiếu.
  • Có khối các port A, B, C, E và D
sơ đồ chân vi dieu khiển pic

a. Chức năng các chân của portA

  • Chân RA0/AN0/ULPWU/C12IN0- (2): có 4 chức năng: + RA0: xuất/ nhập số – bit thứ 0 của port A. + AN0: ngõ vào tương tự của kênh thứ 0.
  • Chân RA1/AN1/C12IN1- (3): có 3 chức năng: + RA1: xuất/nhập số – bit thứ 1 của port A. + AN1: ngõ vào tương tự của kênh thứ 1
  • Chân RA2/AN2/VREF-/CVREF/C2IN+ (4): có 5 chức năng: + RA2: xuất/nhập số – bit thứ 2 của port A. + AN2: ngõ vào tương tự của kênh thứ 2. + VREF-: ngõ vào điện áp chuẩn (thấp) của bộ ADC. CVREF: điện áp tham chiếu VREF ngõ vào bộ so sánh.
  •  Chân RA3/AN3/VREF+/C1IN+ (5): có 4 chức năng: RA3: xuất/nhập số – bit thứ 3 của port A. AN3: ngõ vào tương tự kênh thứ 3. VREF+: ngõ vào điện áp chuẩn (cao) của bộ A/D. C1IN+: ngõ vào dương của bộ so sánh C1. Chân RA4/TOCKI/C1OUT (6): có 3 chức năng:
  •  RA4: xuất/nhập số – bit thứ 4 của port A. TOCKI: ngõ vào xung clock từ bên ngoài cho Timer0. C1OUT: ngõ ra bộ so sánh 1. Chân RA5/AN4/ SS / C2OUT (7): có 4 chức năng: RA5: xuất/nhập số – bit thứ 5 của port A. AN4: ngõ vào tương tự kênh thứ 4.  + SS : ngõ vào chọn lựa SPI tớ (Slave SPI device). C2OUT: ngõ ra bộ so sánh 2. 
  •  Chân RA6/OSC2/CLKOUT (14): có 3 chức năng: + RA6: xuất/nhập số – bit thứ 6 của port A. + OSC2: ngõ ra dao động thạch anh. Kết nối đến thạch anh hoặc bộ cộng hưởng.
  • Chân RA7/OSC1/CLKIN (13): có 3 chức năng. + RA7: xuất/nhập số – bit thứ 7 của port A. + OSC1: ngõ vào dao động thạch anh hoặc ngõ vào nguồn xung ở bên ngoài.

b. Chức năng các chân của portB

  • Chân RB0/AN12/INT (33): có 3 chức năng: + RB0: xuất/nhập số – bit thứ 0 của port B. + AN12: ngõ vào tương tự kênh thứ 12. INT: ngõ vào nhận tín hiệu ngắt ngoài. Chân RB1/AN10/C12IN3- (34): có 3 chức năng:
  •  RB1: xuất/nhập số – bit thứ 1 của port B. AN10: ngõ vào tương tự kênh thứ 10. C12IN3-: ngõ vào âm thứ 3 của bộ so sánh C1 hoặc C2. Chân RB2/AN8 (35): có 2 chức năng:
  •  RB2: xuất/nhập số – bit thứ 2 của port B. AN8: ngõ vào tương tự kênh thứ 8. Chân RB3/AN9/PGM/C12IN2 (36): có 4 chức năng:
  •  RB3: xuất/nhập số – bit thứ 3 của port B. AN9: ngõ vào tương tự kênh thứ 9. PGM: Chân cho phép lập trình điện áp thấp ICSP. C12IN1-: ngõ vào âm thứ 2 của bộ so sánh C1 hoặc C2 Chân RB4/AN11 (37): có 2 chức năng:
  •  RB4: xuất/nhập số – bit thứ 4 của port B. AN11: ngõ vào tương tự kênh thứ 11. Chân RB5/ AN13/T1G (38): có 3 chức năng:
  •  RB5: xuất/nhập số – bit thứ 5 của port B. AN13: ngõ vào tương tự kênh thứ 13. T1G (Timer1 gate input): ngõ vào Gate cho phép time1 đếm dùng để đếm độ rộng xung. + Chân RB6/ICSPCLK (39): có 2 chức năng:
  •  RB6: xuất/nhập số. + ICSPCLK: xung clock lập trình nối tiếp. Chân RB7/ICSPDAT (40): có 2 chức năng:
  •  RB7: xuất/nhập số. ICSPDAT: ngõ xuất nhập dữ liệu lập trình nối tiếp.

c. Chức năng các chân của portC

  • Chân RC0/T1OSO/T1CKI (15): có 3 chức năng: RC0: xuất/nhập số – bit thứ 0 của port C. T1OSO: ngõ ra của bộ dao động Timer1. T1CKI: ngõ vào xung clock từ bên ngoài Timer1.
  • Chân RC1/T1OSI/CCP2 (16): có 3 chức năng: RC1: xuất/nhập số – bit thứ 1 của port C. T1OSI: ngõ vào của bộ dao động Timer1. CCP2: ngõ vào Capture2, ngõ ra compare2, ngõ ra PWM2.
  •  Chân RC2 /P1A/CCP1 (17): có 3 chức năng: RC2: xuất/nhập số – bit thứ 2 của port C. P1A: ngõ ra PWM. CCP1: ngõ vào Capture1, ngõ ra compare1, ngõ ra PWM1.
  •  Chân RC3/SCK/SCL (18): có 3 chức năng: RC3: xuất/nhập số – bit thứ 3 của port C. SCK: ngõ vào xung clock nối tiếp đồng bộ/ngõ ra của chế độ SPI. SCL: ngõ vào xung clock nối tiếp đồng bộ/ngõ ra của chế độ I2C.
  •  Chân RC4/SDI/SDA (23): có 3 chức năng: RC4: xuất/nhập số – bit thứ 4 của port C. SDI: ngõ vào dữ liệu trong truyền dữ liệu kiểu SPI. SDA: xuất/nhập dữ liệu I2C.
  •  Chân RC5/SDO (24): có 2 chức năng: RC5: xuất/nhập số – bit thứ 5 của port C. SDO: ngõ xuất dữ liệu trong truyền dữ liệu kiểu SPI.
  •  Chân RC6/TX/CK (25): có 3 chức năng: RC6: xuất/nhập số – bit thứ 6 của port C. TX: ngõ ra phát dữ liệu trong chế độ truyền bất đồng bộ USART. CK: ngõ ra cấp xung clock trong chế độ truyền đồng bộ USART.
  •  Chân RC7/RX/DT (26): có 3 chức năng: RC7: xuất/nhập số – bit thứ 7 của port C. RX: ngõ vào nhận dữ liệu trong chế độ truyền bất đồng bộ EUSART. DT: ngõ phát và nhận dữ liệu ở chế độ truyền đồng bộ EUSART.

d. Chức năng các chân của portD

  •  Chân RD0 (19): có 1 chức năng: RD0: xuất/nhập số – bit thứ 0 của port D.
  •  Chân RD1 (20): có 1 chức năng: RD1: xuất/nhập số – bit thứ 1 của port D.
  • Chân RD2 (21): có 1 chức năng: RD2: xuất/nhập số – bit thứ 2 của port D.
  •  Chân RD3 (22): có 1 chức năng: RD3: xuất/nhập số – bit thứ 3 của port D.
  •  Chân RD4 (27): có 1 chức năng: RD4: xuất/nhập số – bit thứ 4 của port D.
  •  Chân RD5/ P1B (28): có 2 chức năng: RD5: xuất/nhập số – bit thứ 5 của port D. P1B: ngõ ra PWM.
  •  Chân RD6/ P1C (29): có 2 chức năng: RD6: xuất/nhập số – bit thứ 6 của port D. P1C: ngõ ra PWM.
  •  Chân RD7/P1D (30): có 2 chức năng: RD7: xuất/nhập số – bit thứ 7 của port D. P1D: ngõ ra tăng cường CPP1

e. Chức năng các chân của portE

  •  Chân RE0/AN5 (8): có 2 chức năng: RE0: xuất/nhập số. AN5: ngõ vào tương tự 5.
  •  Chân RE1/AN6 (9): có 2 chức năng: RE1: xuất/nhập số. AN6: ngõ vào tương tự kênh thứ 6.
  •  Chân RE2/AN7 (10): có 2 chức năng: RE2: xuất/nhập số. AN7: ngõ vào tương tự kênh thứ 7.
  •  Chân RE3/ MCLR /VPP (1): có 3 chức năng: RE3: xuất/nhập số – bit thứ 3 của port E. MCLR : là ngõ vào reset tích cực mức thấp. VPP: ngõ vào nhận điện áp khi ghi dữ liệu vào bộ nhớ nội flash. Chân VDD (11), (32): Nguồn cung cấp dương từ 2V đến 5V. Chân VSS (12), (31): Nguồn cung cấp 0V.

1.2 Cảm biến LM35 cho đề tài đo nhiệt độ điều khiển quạt

a. Giới thiệu

LM35 có dải đo từ 0 Độ đến 150 độ C. LM35 là cảm biến tiêu hao điện năng thấp sử dụng điện áp 5V. Cảm biến gồm có 3 chân, 2 chân nguồn, 1 chân tín hiệu ra dạng Analog. Chân dữ liệu của IC cảm biến LM35 là chân ngõ ra điện áp dạng tuyến tính. Chân số 2 cảm biến xuất ra cứ 1mV = 0.1°C (10mV = 1°C). Để lấy dữ liệu ở dạng °C chỉ cần lấy điện áp trên chân OUT đem chia cho 10. Chân 1 cấp điện áp 5V, chân 3 cấp GND, chân 2 là chân OUTPUT dữ liệu dạng điện áp LM35 là một cảm biến nhiệt độ tương tự, điện áp ở đầu ra của cảm biến tỷ lệ với nhiệt độ tức thời và có thể dễ dàng được xử lý để có được giá trị nhiệt độ bằng oC.
cảm biến nhiệt độ lm35

b. Thông số kỹ thuật lm35

  • Điện áp hoạt động: 4~20VDC
  • Công suất tiêu thụ: khoảng 60uA
  • Khoảng đo: -55°C đến 150°C
  • Điện áp tuyến tính theo nhiệt độ: 10mV/°C
  • Sai số: 0.25°C
  • Kiểu chân: TO92
  • Kích thước: 4.3 × 4.3mm
LM35 có thể đo nhiệt độ trong phạm vi từ -55oC đến 150oC. Độ chính xác thực tế của cảm biến: ±1/4°C ở nhiệt độ phòng và ±3/4°C trong phạm vi nhiệt độ từ -55°C đến 150°C. Việc chuyển đổi điện áp đầu ra sang oC cũng dễ dàng và trực tiếp. Trở kháng đầu ra nhỏ, đầu ra tuyến tính và hiệu chuẩn chính xác là những đặc tính vốn có của LM35, giúp tạo giao tiếp để đọc hoặc điều khiển mạch rất dễ dàng. Điện áp cung cấp cho cảm biến LM35 hoạt động có thể từ +4 V đến 30 V. Nó tiêu thụ dòng điện khoảng 60μA. LM35 có nhiều họ là LM35A, LM35CA, LM35D, LM135, LM135A, LM235, LM335. Tất cả các thành viên trong họ LM35 đều hoạt động theo nguyên tắc giống nhau nhưng khả năng đo nhiệt độ khác nhau và chúng cũng có nhiều kiểu chân khác nhau (SOIC, TO-220, TO-92, TO).

c. Nguyên lý hoạt động của cảm biến LM35

Cảm biến LM35 hoạt động bằng cách cho ra một giá trị điện áp nhất định tại chân VOUT (chân giữa) ứng với mỗi mức nhiệt độ. Như vậy, bằng cách đưa vào chân bên trái của cảm biến LM35 điện áp 5V, chân phải nối đất, đo hiệu điện thế ở chân giữa, bạn sẽ có được nhiệt độ (0-100ºC) tương ứng với điện áp đo được. Vì điện áp ngõ ra của cảm biến tương đối nhỏ nên thông thường trong các mạch ứng dụng thực tế, chúng ta thường dùng Op-Amp để khuếch đại điện áp ngõ ra này.

d. Cách tính toán giao tiếp

  • Thiết kế mạch.
  • Cấp nguồn cho cảm biến với điện áp từ 4V đến 30V. Chân GND được nối đất.
  • Kết nối chân VOUT với đầu vào bộ chuyển đổi tương tự sang số hay vi điều khiển.
  • Lấy mẫu đọc ADC để xác định điện áp đầu ra VOUT.
  • Chuyển đổi điện áp thành nhiệt độ.
Công thức để chuyển đổi điện áp sang nhiệt độ độ C cho LM35 là: Nhiệt độ đo được (oC) = Điện áp được đọc bởi bộ ADC/10 mV Tôi chia cho 10 mV vì độ nhạy của cảm biến LM35 là 10mV. Làm theo các bước và hướng dẫn ở trên, bạn có thể dễ dàng giao tiếp cảm biến LM35 với bất kỳ bộ vi điều khiển nào có chân chuyển đổi tín hiệu tương tự sang số được tích hợp sẵn. Hầu hết tất cả các bộ vi điều khiển ngày nay đều có bộ ADC tích hợp sẵn.

e. Các dạng ngoài thực tế

LM35 có thể được sử dụng một trong hai cấu hình mạch như hình bên dưới. Cả hai đều mang lại kết quả khác nhau. Mạch cảm biến nhiệt độ LM35 giao tiếp Atmega Trong cấu hình mạch phía bên trái, cảm biến chỉ có thể đo nhiệt độ dương từ 2 oC đến 150 oC. Theo cấu hình mạch này, chúng ta chỉ cần cấp nguồn cho LM35 và kết nối đầu ra trực tiếp với bộ chuyển đổi tương tự sang số. Trong cấu hình mạch thứ hai, chúng ta có thể đo nhiệt độ toàn dải từ -55 oC đến 150 oC. Cấu hình mạch này hơi phức tạp nhưng mang lại kết quả cao. Trong trường hợp này, chúng ta phải kết nối một điện trở bên ngoài (R1) để chuyển mức điện áp âm lên dương. Giá trị điện trở bên ngoài có thể được tính toán theo công thức ghi bên dưới cấu hình mạch. Mặc dù cấu hình mạch đầu tiên không cần điện trở ở phía đầu ra nhưng tôi khuyên bạn nên kết nối điện trở 80 kΩ đến 100 kΩ giữa chân VOUT và chân GND. Khi tôi thực hiện một số thí nghiệm, tôi nhận thấy rằng các số đọc bị dao động và ngõ ra VOUT có hiện tượng thả nổi. Vì vậy, một điện trở giữa VOUT và GND sẽ cố định chân VOUT ở mức thấp và ngăn không cho chân này bị thả nổi. Các thông số về độ chính xác cho cả hai cấu hình mạch là khác nhau. Mức độ chính xác trung bình là ± 1 oC cho cả hai cấu hình. Nhưng mức độ chính xác giảm đối với khoảng nhiệt độ từ 2 oC đến 25 oC. 

f. Ứng dụng của cảm biến LM35 giao tiếp Atmega

Cảm biến nhiệt độ LM35 phù hợp cho các ứng dụng:
  • Học tập nghiên cứu
  • Đo nhiệt độ của một môi trường cụ thể
  • Giám sát nhiệt độ trong hệ thống HVAC
  • Kiểm tra nhiệt độ pin

1.3 LCD1602 cho đề tài đo nhiệt độ lm35 điều khiển quạt

a. Giới thiệu

Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án.
lcd-16x02

b. Thông số kỹ thuật

  • Điện áp hoạt động là 5 V.
  • Kích thước: 80 x 36 x 12.5 mm
  • Chữ đen, nền xanh lá
  • Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
  • Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
  • Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
  • Có thể được điều khiển với 6 dây tín hiệu
  • Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.

c. Sơ đồ chân LCD

Số chânKý hiệu chânMô tả chân
1VssCấp điện 0v
2VccCấp điện 5v
3V0Chỉnh độ tương phản
4RSLựa chọn thanh ghi địa chỉ hay dữ liệu
5RWLựa chọn thanh ghi Đọc hay Viết
6ENCho phép xuất dữ liệu
7D0Đường truyền dữ liệu 0
8D1Đường truyền dữ liệu 1
9D2Đường truyền dữ liệu 2
10D3Đường truyền dữ liệu 3
11D4Đường truyền dữ liệu 4
12D5Đường truyền dữ liệu 5
13D6Đường truyền dữ liệu 6
14D7Đường truyền dữ liệu 7
15AChân dương đèn màn hình
16KChân âm đèn màn hình
Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:
  • Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
  • Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
  • Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.

d. Địa chỉ ba vùng nhớ 

  • Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
  • Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
  • Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
  • Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.

e. Các lệnh điều khiển của LCD

hinh-lcd1602-bang-gia-tri-LM35 giao tiếp Atmega
  • Lệnh thiết lập chức năng giao tiếp Function set:
    • Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
    • Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
    • Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
    • Các bit cao còn lại là hằng số không đổi.
  • Lệnh xoá màn hình “Clear Display: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.

  • Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
  • Lệnh thiết lập lối vào “Entry mode set: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
    • Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
    • Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
  • Lệnh điều khiển con trỏ hiển thị “Display Control

    • Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
    • Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
    • Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
    • Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
  • Lệnh di chuyển con trỏ “Cursor /Display Shift: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển 
    • Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
    • Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
    • Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
  • Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.

f. Bảng mã ASCII sử dụng cho LCD

bảng mã ascii hiển thị ký tự cho lcd1602
 

g. Bảng địa chỉ cho LCD

hinh-lcd1602-dia-chi-LM35 giao tiếp Atmega

1.4 Module l298 trong đề tài đo nhiệt độ điều khiển quạt

a. Giới thiệu

Module điều khiển động cơ L298 ( mạch cầu H L298)  là một module hưu ích, phổ biến với chức năng thông dụng và giá thành cực kỳ rẻ là lựa chọn của các bạn học sinh, sinh viên.  Mạch này có thể điều khiển được 2 động cơ. Ứng dụng rất nhiều vào các đề tài: điều khiển xe robot, điều khiển cánh tay robot (Cánh tay robot 3 bậc bạn phải sử dụng tới 2 mô đun này), Arduino để điều khiển động cơ sử dụng mô đun điều khiển động cơ… Module l298 điều khiển được các động cơ như motor giảm tốc, motor mini, động cơ bước, động cơ servo, động cơ dc
module l298

b. Thông số kỹ thuật

  • Driver: L298N tích hợp hai mạch cầu H.
  • Điện áp điều khiển: +5 V ~ +35 V
  • Dòng tối đa cho mỗi cầu H là: 2A
  • Điện áp của tín hiệu điều khiển: +5 V ~ +7 V
  • Dòng của tín hiệu điều khiển: 0 ~ 36mA
  • Công suất hao phí: 20W (khi nhiệt độ T = 75 ℃)
  • Nhiệt độ bảo quản: -25 ℃ ~ +130 ℃

c. Sơ đồ chân module L298

  • 12V power, 5V power: là 2 chân cấp nguồn trực tiếp đến động cơ .
  • Power GND : là chân GND cấp nguồn cho động cơ
  • 2 Jump A enable và B enable dùng cho phép động cơ chạy hoặc dừng
  •  IN1, IN2, IN3, IN4: Là 4 chân input , chức năng nhận tín hiệu từ vi điều khiển hoặc Arduino để điều khiển động cơ
  • Output A: nối với động cơ A. bạn chú ý chân +, -. Nếu bạn nối ngược thì động cơ sẽ chạy ngược. Và chú ý nếu bạn nối động cơ bước, bạn phải đấu nối các pha cho phù hợp

2. Hướng dẫn đồ án nhiệt độ LM35 giao tiếp Pic16F hiển thị LCD1602

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng

cam-bien-nhiet-do-lm35-giao-tiep-arduino-hien-thi-lcd1602-1

Phần mềm

#include<LiquidCrystal.h>
LiquidCrystal lcd(2, 3, 4, 5, 6, 7); //(RS, E, D4, D5, D6, D7)
int ar = 0, v = 0, t = 0;
char y = 223;
void setup() {
  lcd.begin(16, 2);
}

void loop() {
  ar = analogRead(A0);
  delay(100);
  // how to convert analog to digital see here: https://pijaeducation.com/adc-in-arduino/
  v = ar * 4.887;
  t = v / 10;

  lcd.setCursor(0, 0);
  lcd.print("AR:");
  lcd.println(ar);

  lcd.setCursor(8, 0);
  lcd.print("mV:");
  lcd.println(v);

  lcd.setCursor(0, 1);
  lcd.print("Temperature:");
  lcd.print(t);
  lcd.print(y);

  delay(1000);
  lcd.clear();
}

3. Hoạt động của mạch đo nhiệt độ điều khiển quạt

Khi cấp điện hệ thống hoạt động, vi điều khiển khởi tạo các giá trị ban đầu, quạt dừng, và lcd 16×2 hiển thị thông tin ban đầu. Lúc này vi điều khiển chờ tín hiệu từ cảm biến nhiệt độ lm35 gửi vào, khi nhận tín hiệu vi pic16f877a xử lý và kích quạt quay theo giá trị nhiệt độ tương ứng như những gì đã lập trình. đồng thời lcd 16×2 hiển thị thông tin báo hiệu cấp độ của quạt

4. Cụ thể hoạt động của mạch điều khiển quạt bằng nhiệt độ lm35 các bạn xem video bên dưới:

Ngoài ra còn nhiều Phần và các môn khác

Đồ án điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 1 Mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 2 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Tổng hợp File ĐỒ ÁN Điện tử cơ bản Tổng hợp File ĐỒ ÁN Viễn thông Tổng hợp File ĐỒ ÁN PLC Tổng hợp File ĐỒ ÁN Cung cấp điện

Chúc các bạn thành công…!!!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *