Arduino Uno R3, Đọc nhiệt độ cảm biến LM35 hiển thị LCD1602

Arduino Uno R3 (Dip) có 14 chân digital dùng để đọc hoặc xuất tín hiệu. Chúng chỉ có 2 mức điện áp là 0V và 5V với dòng vào/ra tối đa trên mỗi chân là 40mA. Ở mỗi chân đều có các điện trở pull-up từ được cài đặt ngay trong vi điều khiển ATmega328 (mặc định thì các điện trở này không được kết nối). Arduino Uno R3 là một bảng mạch vi điều khiển nguồn mở dựa trên vi điều khiển Microchip ATmega328 được phát triển bởi Arduino.cc. Bảng mạch được trang bị các bộ chân đầu vào/ đầu ra Digital và Analog có thể giao tiếp với các bảng mạch mở rộng khác nhau. Mạch Arduino Uno thích hợp cho những bạn mới tiếp cận và đam mê về điện tử, lập trình…Dựa trên nền tảng mở do Arduino.cc cung cấp các bạn dễ dàng xây dựng cho mình một dự án nhanh nhất ( lập trình Robot, xe tự hành, điều khiển bật tắt led…).  
Liên hệ làm Đồ án và Mạch điện tử Phone : 0967.551.477 Zalo    : 0967.551.477 FB      : Huỳnh Nhật Tùng Email : dientunhattung@gmail.com Địa Chỉ: 171/25 Lê Văn Thọ, P8, Gò Vấp, Tp HCM Chi tiết: Nhận làm mạch và đồ án Điện tử  

1. Linh kiện cần thiết làm mạch Arduino Uno R3

1.1 Vi điều khiển Arduino Uno R

a. Giới thiệu

Arduino Uno R3 (Dip) có 14 chân digital dùng để đọc hoặc xuất tín hiệu. Chúng chỉ có 2 mức điện áp là 0V và 5V với dòng vào/ra tối đa trên mỗi chân là 40mA. Ở mỗi chân đều có các điện trở pull-up từ được cài đặt ngay trong vi điều khiển ATmega328 (mặc định thì các điện trở này không được kết nối). Arduino Uno R3 là một bảng mạch vi điều khiển nguồn mở dựa trên vi điều khiển Microchip ATmega328 được phát triển bởi Arduino.cc. Bảng mạch được trang bị các bộ chân đầu vào/ đầu ra Digital và Analog có thể giao tiếp với các bảng mạch mở rộng khác nhau. Mạch Arduino Uno thích hợp cho những bạn mới tiếp cận và đam mê về điện tử, lập trình…Dựa trên nền tảng mở do Arduino.cc cung cấp các bạn dễ dàng xây dựng cho mình một dự án nhanh nhất ( lập trình Robot, xe tự hành, điều khiển bật tắt led…). Mach-dieu-khien-dong-co-buoc-DC-step-Arduino-uno-r3-1 Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, … các ứng dụng của vi điều khiển

b. Chức năng của Arduino R3:

  • 2 chân Serial: 0 (RX) và 1 (TX): dùng để gửi (transmit – TX) và nhận (receive – RX) dữ liệu TTL Serial. Arduino Uno có thể giao tiếp với thiết bị khác thông qua 2 chân này. Kết nối bluetooth thường thấy nói nôm na chính là kết nối Serial không dây. Nếu không cần giao tiếp Serial, bạn không nên sử dụng 2 chân này nếu không cần thiết
  • Chân PWM (~): 3, 5, 6, 9, 10, và 11: cho phép bạn xuất ra xung PWM với độ phân giải 8bit (giá trị từ 0 → 28-1 tương ứng với 0V → 5V) bằng hàm analogWrite(). Nói một cách đơn giản, bạn có thể điều chỉnh được điện áp ra ở chân này từ mức 0V đến 5V thay vì chỉ cố định ở mức 0V và 5V như những chân khác.
  • Chân giao tiếp SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK).  Ngoài các chức năng thông thường, 4 chân này còn dùng để truyền phát dữ liệu bằng giao thức SPI với các thiết bị khác.
  • LED 13: trên Arduino UNO có 1 đèn led màu cam (kí hiệu chữ L). Khi bấm nút Reset, bạn sẽ thấy đèn này nhấp nháy để báo hiệu. Nó được nối với chân số 13. Khi chân này được người dùng sử dụng, LED sẽ sáng.
  • Arduino Uno R3 có 6 chân analog (A0 → A5) cung cấp độ phân giải tín hiệu 10bit (0 → 210-1) để đọc giá trị điện áp trong khoảng 0V → 5V. Với chân AREF trên board, bạn có thể để đưa vào điện áp tham chiếu khi sử dụng các chân analog. Tức là nếu bạn cấp điện áp 2.5V vào chân này thì bạn có thể dùng các chân analog để đo điện áp trong khoảng từ 0V  → 2.5V với độ phân giải vẫn là 10bit. Đặc biệt, Arduino UNO có 2 chân A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.
Mach-dieu-khien-dong-co-buoc-DC-step-Arduino-uno-r3-2  

c.Thông số kỹ thuật Arduino Uno R3 (Dip)

DatasheetsAtmega328
Standard Package27
CategoryIntegrated Circuits (ICs)
FamilyEmbedded – Atmel
SeriesAtmega
PackagingTube
Core ProcessorAVR
Core Size8-Bit
Speed16MHz
ConnectivityI²C, SPI, UART / USART, USB
PeripheralsBrown-out Detec t/ Reset, HLVD, POR, PWM, WDT
Number of I /O14
Program Memory Size32KB
Program Memory TypeFLASH
EEPROM Size1KB
RAM Size2K
Voltage – Supply (Vcc/Vdd)4.2 V ~ 5.5 V
Data ConvertersA/D 6 x 10bit
Oscillator TypeInternal
Operating Temperature-40°C ~ 85°C
Package / Case28-SOIC (0.295″, 7.50mm Width)
Other NamesAtmega328

d. Power

  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • VIN: Chân này dùng để cấp nguồn ngoài (điện áp cấp từ 7-12VDC).
  • 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
  • 3V3: Điện áp ra 3.3V (dòng điện trên mỗi chân này tối đa là 50mA).
  • GND: Là chân mang điện cực âm trên board.
  • IOREF: Điệp áp hoạt động của vi điều khiển trên Arduino UNO và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.
 

e.Bộ nhớ

Vi điều khiển ATmega328:
  • 32 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
  • 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
  • 1 KB cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.
 

f. Các chân đầu vào và đầu ra

Trên Board Arduino Uno có 14 chân Digital được sử dụng để làm chân đầu vào và đầu ra và chúng sử dụng các hàm pinMode(), digitalWrite(), digitalRead(). Giá trị điện áp trên mỗi chân là 5V, dòng trên mỗi chân là 20mA và bên trong có điện trở kéo lên là 20-50 ohm. Dòng tối đa trên mỗi chân I/O không vượt quá 40mA để tránh trường hợp gây hỏng board mạch. Ngoài ra, một số chân Digital có chức năng đặt biệt:
  • Serial: 0 (RX) và 1 (TX): Được sử dụng để nhận dữ liệu (RX) và truyền dữ liệu (TX) TTL.
  • Ngắt ngoài: Chân 2 và 3.
  • PWM: 3, 5, 6, 9 và 11 Cung cấp đầu ra xung PWM với độ phân giải 8 bit bằng hàm analogWrite ().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Các chân này hỗ trợ giao tiếp SPI bằng thư viện SPI.
  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • TWI/I2C: A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.

1.2 Cảm biến Nhiệt độ LM35

a. Giới thiệu

LM35 có dải đo từ 0 Độ đến 150 độ C. LM35 là cảm biến tiêu hao điện năng thấp sử dụng điện áp 5V. Cảm biến gồm có 3 chân, 2 chân nguồn, 1 chân tín hiệu ra dạng Analog. Chân dữ liệu của IC cảm biến LM35 là chân ngõ ra điện áp dạng tuyến tính. Chân số 2 cảm biến xuất ra cứ 1mV = 0.1°C (10mV = 1°C). Để lấy dữ liệu ở dạng °C chỉ cần lấy điện áp trên chân OUT đem chia cho 10. Chân 1 cấp điện áp 5V, chân 3 cấp GND, chân 2 là chân OUTPUT dữ liệu dạng điện áp LM35 là một cảm biến nhiệt độ tương tự, điện áp ở đầu ra của cảm biến tỷ lệ với nhiệt độ tức thời và có thể dễ dàng được xử lý để có được giá trị nhiệt độ bằng oC.
cảm biến nhiệt độ lm35

b. Thông số kỹ thuật lm35 giao tiếp Atmega

  • Điện áp hoạt động: 4~20VDC
  • Công suất tiêu thụ: khoảng 60uA
  • Khoảng đo: -55°C đến 150°C
  • Điện áp tuyến tính theo nhiệt độ: 10mV/°C
  • Sai số: 0.25°C
  • Kiểu chân: TO92
  • Kích thước: 4.3 × 4.3mm
LM35 có thể đo nhiệt độ trong phạm vi từ -55oC đến 150oC. Độ chính xác thực tế của cảm biến: ±1/4°C ở nhiệt độ phòng và ±3/4°C trong phạm vi nhiệt độ từ -55°C đến 150°C. Việc chuyển đổi điện áp đầu ra sang oC cũng dễ dàng và trực tiếp. Trở kháng đầu ra nhỏ, đầu ra tuyến tính và hiệu chuẩn chính xác là những đặc tính vốn có của LM35, giúp tạo giao tiếp để đọc hoặc điều khiển mạch rất dễ dàng. Điện áp cung cấp cho cảm biến LM35 hoạt động có thể từ +4 V đến 30 V. Nó tiêu thụ dòng điện khoảng 60μA. LM35 có nhiều họ là LM35A, LM35CA, LM35D, LM135, LM135A, LM235, LM335. Tất cả các thành viên trong họ LM35 đều hoạt động theo nguyên tắc giống nhau nhưng khả năng đo nhiệt độ khác nhau và chúng cũng có nhiều kiểu chân khác nhau (SOIC, TO-220, TO-92, TO).

c. Nguyên lý hoạt động của cảm biến LM35 giao tiếp Arduino

Cảm biến LM35 hoạt động bằng cách cho ra một giá trị điện áp nhất định tại chân VOUT (chân giữa) ứng với mỗi mức nhiệt độ. Như vậy, bằng cách đưa vào chân bên trái của cảm biến LM35 điện áp 5V, chân phải nối đất, đo hiệu điện thế ở chân giữa, bạn sẽ có được nhiệt độ (0-100ºC) tương ứng với điện áp đo được. Vì điện áp ngõ ra của cảm biến tương đối nhỏ nên thông thường trong các mạch ứng dụng thực tế, chúng ta thường dùng Op-Amp để khuếch đại điện áp ngõ ra này.

d. Cách tính toán giao tiếp

  • Thiết kế mạch.
  • Cấp nguồn cho cảm biến với điện áp từ 4V đến 30V. Chân GND được nối đất.
  • Kết nối chân VOUT với đầu vào bộ chuyển đổi tương tự sang số hay vi điều khiển.
  • Lấy mẫu đọc ADC để xác định điện áp đầu ra VOUT.
  • Chuyển đổi điện áp thành nhiệt độ.
Công thức để chuyển đổi điện áp sang nhiệt độ độ C cho LM35 là: Nhiệt độ đo được (oC) = Điện áp được đọc bởi bộ ADC/10 mV Tôi chia cho 10 mV vì độ nhạy của cảm biến LM35 là 10mV. Làm theo các bước và hướng dẫn ở trên, bạn có thể dễ dàng giao tiếp cảm biến LM35 với bất kỳ bộ vi điều khiển nào có chân chuyển đổi tín hiệu tương tự sang số được tích hợp sẵn. Hầu hết tất cả các bộ vi điều khiển ngày nay đều có bộ ADC tích hợp sẵn.

e. Các dạng ngoài thực tế

LM35 có thể được sử dụng một trong hai cấu hình mạch như hình bên dưới. Cả hai đều mang lại kết quả khác nhau. Mạch cảm biến nhiệt độ LM35 giao tiếp Atmega Trong cấu hình mạch phía bên trái, cảm biến chỉ có thể đo nhiệt độ dương từ 2 oC đến 150 oC. Theo cấu hình mạch này, chúng ta chỉ cần cấp nguồn cho LM35 và kết nối đầu ra trực tiếp với bộ chuyển đổi tương tự sang số. Trong cấu hình mạch thứ hai, chúng ta có thể đo nhiệt độ toàn dải từ -55 oC đến 150 oC. Cấu hình mạch này hơi phức tạp nhưng mang lại kết quả cao. Trong trường hợp này, chúng ta phải kết nối một điện trở bên ngoài (R1) để chuyển mức điện áp âm lên dương. Giá trị điện trở bên ngoài có thể được tính toán theo công thức ghi bên dưới cấu hình mạch. Mặc dù cấu hình mạch đầu tiên không cần điện trở ở phía đầu ra nhưng tôi khuyên bạn nên kết nối điện trở 80 kΩ đến 100 kΩ giữa chân VOUT và chân GND. Khi tôi thực hiện một số thí nghiệm, tôi nhận thấy rằng các số đọc bị dao động và ngõ ra VOUT có hiện tượng thả nổi. Vì vậy, một điện trở giữa VOUT và GND sẽ cố định chân VOUT ở mức thấp và ngăn không cho chân này bị thả nổi. Các thông số về độ chính xác cho cả hai cấu hình mạch là khác nhau. Mức độ chính xác trung bình là ± 1 oC cho cả hai cấu hình. Nhưng mức độ chính xác giảm đối với khoảng nhiệt độ từ 2 oC đến 25 oC. 

f. Ứng dụng của cảm biến LM35 giao tiếp Arduino

Cảm biến nhiệt độ LM35 phù hợp cho các ứng dụng:
  • Học tập nghiên cứu
  • Đo nhiệt độ của một môi trường cụ thể
  • Giám sát nhiệt độ trong hệ thống HVAC
  • Kiểm tra nhiệt độ pin

1.3 LCD1602 mạch Arduino Uno R3

a. Giới thiệu

Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án.
lcd-16x02

b. Thông số kỹ thuật

  • Điện áp hoạt động là 5 V.
  • Kích thước: 80 x 36 x 12.5 mm
  • Chữ đen, nền xanh lá
  • Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
  • Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
  • Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
  • Có thể được điều khiển với 6 dây tín hiệu
  • Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.

c. Sơ đồ chân LCD

Số chânKý hiệu chânMô tả chân
1VssCấp điện 0v
2VccCấp điện 5v
3V0Chỉnh độ tương phản
4RSLựa chọn thanh ghi địa chỉ hay dữ liệu
5RWLựa chọn thanh ghi Đọc hay Viết
6ENCho phép xuất dữ liệu
7D0Đường truyền dữ liệu 0
8D1Đường truyền dữ liệu 1
9D2Đường truyền dữ liệu 2
10D3Đường truyền dữ liệu 3
11D4Đường truyền dữ liệu 4
12D5Đường truyền dữ liệu 5
13D6Đường truyền dữ liệu 6
14D7Đường truyền dữ liệu 7
15AChân dương đèn màn hình
16KChân âm đèn màn hình
Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:
  • Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
  • Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
  • Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.

d. Địa chỉ ba vùng nhớ 

  • Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
  • Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
  • Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
  • Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.

e. Các lệnh điều khiển của LCD

hinh-lcd1602-bang-gia-tri-Arduino Uno R3
  • Lệnh thiết lập chức năng giao tiếp Function set:
    • Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
    • Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
    • Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
    • Các bit cao còn lại là hằng số không đổi.
  • Lệnh xoá màn hình “Clear Display: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.

  • Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
  • Lệnh thiết lập lối vào “Entry mode set: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
    • Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
    • Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
  • Lệnh điều khiển con trỏ hiển thị “Display Control

    • Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
    • Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
    • Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
    • Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
  • Lệnh di chuyển con trỏ “Cursor /Display Shift: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển 
    • Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
    • Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
    • Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
  • Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.

f. Bảng mã ASCII sử dụng cho LCD

bảng mã ascii hiển thị ký tự cho lcd1602 Arduino Uno R3
 

g. Bảng địa chỉ cho LCD

hinh-lcd1602-dia-chi-Arduino Uno R3

2. Hướng dẫn đồ án nhiệt độ LM35 giao tiếp Atmega hiển thị LCD1602

Phần cứng

cam-bien-nhiet-do-lm35-giao-tiep-arduino-hien-thi-lcd1602-1

Phần mềm

#include<LiquidCrystal.h>
LiquidCrystal lcd(2, 3, 4, 5, 6, 7); //(RS, E, D4, D5, D6, D7)
int ar = 0, v = 0, t = 0;
char y = 223;
void setup() {
  lcd.begin(16, 2);
}

void loop() {
  ar = analogRead(A0);
  delay(100);
  // how to convert analog to digital see here: https://pijaeducation.com/adc-in-arduino/
  v = ar * 4.887;
  t = v / 10;

  lcd.setCursor(0, 0);
  lcd.print("AR:");
  lcd.println(ar);

  lcd.setCursor(8, 0);
  lcd.print("mV:");
  lcd.println(v);

  lcd.setCursor(0, 1);
  lcd.print("Temperature:");
  lcd.print(t);
  lcd.print(y);

  delay(1000);
  lcd.clear();
}

3. Hoạt động của mạch Arduino Uno R3

Khi cấp điện hệ thống hoạt động, vi điều khiển Arduino Uno R3 hiển thị thông tin ban đầu. Lúc này vi điều khiển Arduino Uno R3 chờ tín hiệu từ cảm biến nhiệt độ LM35 đưa vào. Khi nhận tín hiệu Arduino Uno R3 tính toán, xử lý dữ liệu sau đó gửi giá trị nhiệt độ ra màn hình LCD1602 để hiển thị thông tin đã được lập trình.

4. Cụ thể hoạt động của mạch Arduino Uno R3 các bạn xem video:

Ngoài ra còn nhiều Phần và các môn khác

Đồ án điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 1 Mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 2 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Vi xử lý, Lập trình vi điều khiển Pic – 8051 – Avr – Phần 4 Tổng hợp File ĐỒ ÁN Điện tử cơ bản Tổng hợp File ĐỒ ÁN Viễn thông Tổng hợp File ĐỒ ÁN PLC Tổng hợp File ĐỒ ÁN Cung cấp điện

Sẽ còn các phần khác nữa nhé.

Chúc các bạn thành công…!!!

Leave a Reply