Sim900A giao tiếp Arduino, Nhắn tin, Gọi điện Sim900A + LM35+ Arduino

doc-cam-bien-nhiet-do-lm35-arduino-dien-thoai-bang-nhan-tin-goi-dien-module-sim900a-2

Sim900A giao tiếp Arduino dùng Module SIM900A GPRS/GSM này được xây dựng dựa trên SIM900A GSM/GPRS của SIMCOM. Hoạt động trên các tần số 900/ 1800 MHz. SIM900A có thể tự động tìm kiếm hai băng tần này. Ngoài ra cũng có thể thiết lập các dải tần số thông qua tập lệnh AT. Tốc độ truyền có thể được cấu hình từ 1200-115200 thông qua lệnh AT. Modem GSM / GPRS có ngăn xếp TCP / IP nội bộ để cho phép bạn kết nối với internet qua GPRS. SIM900A là một mô-đun không dây nhỏ gọn và đáng tin cậy. Đây là một module GSM / GPRS hoàn chỉnh trong loại SMT và được thiết kế với một bộ xử lý chip đơn cực mạnh kết hợp lõi AMR926EJ-S.  

 

Liên hệ làm Đồ án và Mạch điện tử

 

Table of Contents

1. Linh kiện cần thiết làm mạch điều khiển thiết bị bằng nhắn tin, gọi điện Sim900A giao tiếp Arduino

1.1 Vi điều khiển Arduino trong mạch điều khiển thiết bị bằng nhắn tin, gọi điện Sim900A giao tiếp Arduino

a. Giới thiệu

Arduino Uno R3 (Dip) có 14 chân digital dùng để đọc hoặc xuất tín hiệu. Chúng chỉ có 2 mức điện áp là 0V và 5V với dòng vào/ra tối đa trên mỗi chân là 40mA. Ở mỗi chân đều có các điện trở pull-up từ được cài đặt ngay trong vi điều khiển ATmega328 (mặc định thì các điện trở này không được kết nối).

Các chức năng khác

Arduino Uno R3 là một bảng mạch vi điều khiển nguồn mở dựa trên vi điều khiển Microchip ATmega328 được phát triển bởi Arduino.cc. Bảng mạch được trang bị các bộ chân đầu vào/ đầu ra Digital và Analog có thể giao tiếp với các bảng mạch mở rộng khác nhau. Mạch Arduino Uno thích hợp cho những bạn mới tiếp cận và đam mê về điện tử, lập trình…Dựa trên nền tảng mở do Arduino.cc cung cấp các bạn dễ dàng xây dựng cho mình một dự án nhanh nhất ( lập trình Robot, xe tự hành, điều khiển bật tắt led…). Mach-dieu-khien-dong-co-buoc-DC-step-Arduino-uno-r3-1
các ứng dụng của vi điều khiển

b. Chức năng của Arduino R3:

  • 2 chân Serial: 0 (RX) và 1 (TX): dùng để gửi (transmit – TX) và nhận (receive – RX) dữ liệu TTL Serial. Arduino Uno có thể giao tiếp với thiết bị khác thông qua 2 chân này. Kết nối bluetooth thường thấy nói nôm na chính là kết nối Serial không dây. Nếu không cần giao tiếp Serial, bạn không nên sử dụng 2 chân này nếu không cần thiết
  • Chân PWM (~): 3, 5, 6, 9, 10, và 11: cho phép bạn xuất ra xung PWM với độ phân giải 8bit (giá trị từ 0 → 28-1 tương ứng với 0V → 5V) bằng hàm analogWrite(). Nói một cách đơn giản, bạn có thể điều chỉnh được điện áp ra ở chân này từ mức 0V đến 5V thay vì chỉ cố định ở mức 0V và 5V như những chân khác.

Các chức năng khác

  • Chân giao tiếp SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK).  Ngoài các chức năng thông thường, 4 chân này còn dùng để truyền phát dữ liệu bằng giao thức SPI với các thiết bị khác.
  • LED 13: trên Arduino UNO có 1 đèn led màu cam (kí hiệu chữ L). Khi bấm nút Reset, bạn sẽ thấy đèn này nhấp nháy để báo hiệu. Nó được nối với chân số 13. Khi chân này được người dùng sử dụng, LED sẽ sáng.
  • Arduino Uno R3 có 6 chân analog (A0 → A5) cung cấp độ phân giải tín hiệu 10bit (0 → 210-1) để đọc giá trị điện áp trong khoảng 0V → 5V. Với chân AREF trên board, bạn có thể để đưa vào điện áp tham chiếu khi sử dụng các chân analog. Tức là nếu bạn cấp điện áp 2.5V vào chân này thì bạn có thể dùng các chân analog để đo điện áp trong khoảng từ 0V  → 2.5V với độ phân giải vẫn là 10bit. Đặc biệt, Arduino UNO có 2 chân A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.

Mach-dieu-khien-dong-co-buoc-DC-step-Arduino-uno-r3-2 BH1750 giao tiếp Arduino  

 

c.Thông số kỹ thuật Arduino Uno R3 (Dip)

DatasheetsAtmega328
Standard Package27
CategoryIntegrated Circuits (ICs)
FamilyEmbedded – Atmel
SeriesAtmega
PackagingTube
Core ProcessorAVR
Core Size8-Bit
Speed16MHz
ConnectivityI²C, SPI, UART / USART, USB
PeripheralsBrown-out Detec t/ Reset, HLVD, POR, PWM, WDT
Number of I /O14
Program Memory Size32KB
Program Memory TypeFLASH
EEPROM Size1KB
RAM Size2K
Voltage – Supply (Vcc/Vdd)4.2 V ~ 5.5 V
Data ConvertersA/D 6 x 10bit
Oscillator TypeInternal
Operating Temperature-40°C ~ 85°C
Package / Case28-SOIC (0.295″, 7.50mm Width)
Other NamesAtmega328

 

d. Power

  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • VIN: Chân này dùng để cấp nguồn ngoài (điện áp cấp từ 7-12VDC).
  • 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
  • 3V3: Điện áp ra 3.3V (dòng điện trên mỗi chân này tối đa là 50mA).
  • GND: Là chân mang điện cực âm trên board.
  • IOREF: Điệp áp hoạt động của vi điều khiển trên Arduino UNO và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.

e.Bộ nhớ

Vi điều khiển ATmega328:
  • 32 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
  • 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
  • 1 KB cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.

f. Các chân đầu vào và đầu ra

Trên Board Arduino Uno có 14 chân Digital được sử dụng để làm chân đầu vào và đầu ra và chúng sử dụng các hàm pinMode(), digitalWrite(), digitalRead(). Giá trị điện áp trên mỗi chân là 5V, dòng trên mỗi chân là 20mA và bên trong có điện trở kéo lên là 20-50 ohm. Dòng tối đa trên mỗi chân I/O không vượt quá 40mA để tránh trường hợp gây hỏng board mạch. Ngoài ra, một số chân Digital có chức năng đặt biệt:
  • Serial: 0 (RX) và 1 (TX): Được sử dụng để nhận dữ liệu (RX) và truyền dữ liệu (TX) TTL.
  • Ngắt ngoài: Chân 2 và 3.
  • PWM: 3, 5, 6, 9 và 11 Cung cấp đầu ra xung PWM với độ phân giải 8 bit bằng hàm analogWrite ().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Các chân này hỗ trợ giao tiếp SPI bằng thư viện SPI.
  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • TWI/I2C: A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.

1.2 Module Sim900A dùng nhắn tin, gọi điện Sim900A giao tiếp Arduino

a. Giới thiệu

Module SIM900A GPRS/GSM này được xây dựng dựa trên SIM900A GSM/GPRS của SIMCOM. Hoạt động trên các tần số 900/ 1800 MHz. SIM900A có thể tự động tìm kiếm hai băng tần này. Ngoài ra cũng có thể thiết lập các dải tần số thông qua tập lệnh AT. Tốc độ truyền có thể được cấu hình từ 1200-115200 thông qua lệnh AT. Modem GSM / GPRS có ngăn xếp TCP / IP nội bộ để cho phép bạn kết nối với internet qua GPRS. SIM900A là một mô-đun không dây nhỏ gọn và đáng tin cậy.

Đây là một module GSM / GPRS hoàn chỉnh trong loại SMT và được thiết kế với một bộ xử lý chip đơn cực mạnh kết hợp lõi AMR926EJ-S. Module GSM GPRS Sim900A có IC đệm (GSM sim900a module ) được thiết kế cho các ứng dụng cần độ bền và độ ổn định cao, mạch có kích thước nhỏ gọn nhưng vẫn giữ được các yếu tố cần thiết của thiết kế Sim900 cũ như: Mạch chuyển mức tín hiệu logic sử dụng Mosfet, IC giao tiếp RS323 MAX232, tụ ổn định nguồn đầu vào, khe sim chuẩn và các đèn led báo hiệu. Ngoài ra mạch còn đi kèm dây cáp nguồn và Anten GSM.

doc-cam-bien-nhiet-do-lm35-arduino-dien-thoai-bang-nhan-tin-goi-dien-module-sim900a-1

b. Thông số kỹ thuật Sim900A giao tiếp Arduino

  • Điện áp hoạt động: 4.7-5V
  • Điện năng tiêu thụ thấp: 1.5mA (ở chế độ ngủ)
  • Nhiệt độ hoạt động: -40 – 85 °C
  • Điều khiển qua tập lệnh AT (GSM 07.07 ,07.05 and SIMCOM enhanced AT Commands)
  • Băng tần kép 900/ 1800 MHz
  • GPRS multi-slot class 10/8
  • GPRS mobile station class B
  • Phù hợp với GSM giai đoạn 2/2+
  • Kích thước: 24 x 24 x 3 mm
  • Trọng lượng: 3.4g
  • Sử dụng module GSM GPRS Sim900A.
  •  Nguồn cấp đầu vào: 5VDC, 1.5A.
  •  Mức tín hiệu giao tiếp: TTL (3.3 – ­5VDC).
  • Tích hợp chuyển mức tín hiệu TTL Mosfet tốc độ cao.
  •  Tích hợp IC chuyển mức tín hiệu RS232 MAX232.
  •  Có tụ ổn định nguồn đầu vào.
  •  Khe sim kích thước chuẩn.
  • Có led hiển thị trạng thái.
  •  Thiết kế mạch nhỏ gọn, bền bỉ, chống nhiễu.

c. Chức năng các chân của module sim900A

doc-cam-bien-nhiet-do-lm35-arduino-dien-thoai-bang-nhan-tin-goi-dien-module-sim900a

d. Tập lệnh AT của module sim900A cần giao tiếp vi điều khiển

Các lệnh chung

  • Lệnh: AT<CR><LF>
  • Mô tả : Kiểm tra đáp ứng của Module Sim 900A, nếu trả về OK thì Module hoạt động

  • Lệnh: ATE[x]<CR><LF>
  • Mô tả: Chế độ echo là chế độ phản hồi dữ liệu truyền đến của module Sim 900A, x = 1 bật chế độ echo , x = 0 tắt chế độ echo (bạn nên tắt chế độ này khi giao tiếp với vi điều khiển)

  • Lệnh: AT+IPR=[baud rate]<CR><LF>
  • Mô tả:  cài đặt tốc độ giao tiếp dữ liệu với Module Sim800C, chỉ cài được các tốc độ sau
  • baud rate :    0  (auto), 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200

  • Lệnh:  AT&W<CR><LF>
  • Mô tả :  lưu lại các lệnh đã cài đặt

Các lệnh điều khiển cuộc gọi

  • Lệnh: AT+CLIP=1<CR><LF>
  • Mô tả: Hiển thị thông tin cuộc gọi đến

  • Lệnh: ATD[Số_điện_thoại];<CR><LF>
  • Mô tả: Lệnh thực hiện cuộc gọi

  • Lệnh: ATH<CR><LF>
  • Mô tả: Lệnh thực hiện kết thúc cuộc gọi , hoặc cúp máy khi có cuộc gọi đến

  • Lệnh: ATA<CR><LF>
  • Mô tả: Lệnh thực hiện chấp nhận khi có cuộc gọi đến

Các lệnh điều khiển tin nhắn

  • Lệnh: AT+CMGF=1<CR><LF>
  • Mô tả: Lệnh đưa SMS về chế độ Text , phải có lệnh này mới gửi nhận tin nhắn dạng Text

  • Lệnh: AT+CMGS=”Số_điện _thoại”<CR><LF>
  • Đợi đến khi có ký tự ‘>’ được gửi về thì đánh nối dung tin nhắn   
  • Gửi mã Ctrl+Z  hay 0x1A hoặc giá trị 26 để kết thúc nội dung và gửi tin nhắn
  • Mô tả: Lệnh gửi tin nhắn

  • Lệnh: AT+CMGR=x<CR><LF>
  • x là địa chỉ tin nhắn cần đọc
  • Mô tả: Đọc một nhắn vừa gửi đến, lệnh được trả về nội dung tin nhắn, thông tin người gửi, thời gian gửi

  • Lệnh: AT+CMGDA=”DEL ALL”<CR><LF>
  • Mô tả:  Xóa toàn bộ tin nhắn trong các hộp thư

  • Lệnh: AT+CNMI=2,2<CR><LF>
  • Mô tả: Hiển thị nội dung tin nhắn ngay khi có tin nhắn đến

1.3 Cảm biến nhiệt độ LM35 dùng gọi điện, nhắn tin module Sim900A giao tiếp Arduino

a. Giới thiệu

LM35 có dải đo từ 0 Độ đến 150 độ C. LM35 là cảm biến tiêu hao điện năng thấp sử dụng điện áp 5V. Cảm biến gồm có 3 chân, 2 chân nguồn, 1 chân tín hiệu ra dạng Analog. Chân dữ liệu của IC cảm biến LM35 là chân ngõ ra điện áp dạng tuyến tính. Chân số 2 cảm biến xuất ra cứ 1mV = 0.1°C (10mV = 1°C).

Để lấy dữ liệu ở dạng °C chỉ cần lấy điện áp trên chân OUT đem chia cho 10. Chân 1 cấp điện áp 5V, chân 3 cấp GND, chân 2 là chân OUTPUT dữ liệu dạng điện áp LM35 là một cảm biến nhiệt độ tương tự, điện áp ở đầu ra của cảm biến tỷ lệ với nhiệt độ tức thời và có thể dễ dàng được xử lý để có được giá trị nhiệt độ bằng oC.

cảm biến nhiệt độ lm35

b. Thông số kỹ thuật lm35 

  • Điện áp hoạt động: 4~20VDC
  • Công suất tiêu thụ: khoảng 60uA
  • Khoảng đo: -55°C đến 150°C
  • Điện áp tuyến tính theo nhiệt độ: 10mV/°C
  • Sai số: 0.25°C
  • Kiểu chân: TO92
  • Kích thước: 4.3 × 4.3mm

LM35 có thể đo nhiệt độ trong phạm vi từ -55oC đến 150oC. Độ chính xác thực tế của cảm biến: ±1/4°C ở nhiệt độ phòng và ±3/4°C trong phạm vi nhiệt độ từ -55°C đến 150°C. Việc chuyển đổi điện áp đầu ra sang oC cũng dễ dàng và trực tiếp. Trở kháng đầu ra nhỏ, đầu ra tuyến tính và hiệu chuẩn chính xác là những đặc tính vốn có của LM35, giúp tạo giao tiếp để đọc hoặc điều khiển mạch rất dễ dàng. Điện áp cung cấp cho cảm biến LM35 hoạt động có thể từ +4 V đến 30 V.

Nó tiêu thụ dòng điện khoảng 60μA. LM35 có nhiều họ là LM35A, LM35CA, LM35D, LM135, LM135A, LM235, LM335. Tất cả các thành viên trong họ LM35 đều hoạt động theo nguyên tắc giống nhau nhưng khả năng đo nhiệt độ khác nhau và chúng cũng có nhiều kiểu chân khác nhau (SOIC, TO-220, TO-92, TO).

c. Nguyên lý hoạt động của cảm biến LM35

Cảm biến LM35 hoạt động bằng cách cho ra một giá trị điện áp nhất định tại chân VOUT (chân giữa) ứng với mỗi mức nhiệt độ. Như vậy, bằng cách đưa vào chân bên trái của cảm biến LM35 điện áp 5V, chân phải nối đất, đo hiệu điện thế ở chân giữa, bạn sẽ có được nhiệt độ (0-100ºC) tương ứng với điện áp đo được. Vì điện áp ngõ ra của cảm biến tương đối nhỏ nên thông thường trong các mạch ứng dụng thực tế, chúng ta thường dùng Op-Amp để khuếch đại điện áp ngõ ra này.

d. Cách tính toán giao tiếp

  • Thiết kế mạch.
  • Cấp nguồn cho cảm biến với điện áp từ 4V đến 30V. Chân GND được nối đất.
  • Kết nối chân VOUT với đầu vào bộ chuyển đổi tương tự sang số hay vi điều khiển.
  • Lấy mẫu đọc ADC để xác định điện áp đầu ra VOUT.
  • Chuyển đổi điện áp thành nhiệt độ.

Công thức để chuyển đổi điện áp sang nhiệt độ độ C cho LM35 là: Nhiệt độ đo được (oC) = Điện áp được đọc bởi bộ ADC/10mV Tôi chia cho 10mV vì độ nhạy của cảm biến LM35 là 10mV. Làm theo các bước và hướng dẫn ở trên, bạn có thể dễ dàng giao tiếp cảm biến LM35 với bất kỳ bộ vi điều khiển nào có chân chuyển đổi tín hiệu tương tự sang số được tích hợp sẵn. Hầu hết tất cả các bộ vi điều khiển ngày nay đều có bộ ADC tích hợp sẵn.

e. Các dạng ngoài thực tế

Trong cấu hình mạch phía bên trái, cảm biến chỉ có thể đo nhiệt độ dương từ 2oC đến 150oC. Theo cấu hình mạch này, chúng ta chỉ cần cấp nguồn cho LM35 và kết nối đầu ra trực tiếp với bộ chuyển đổi tương tự sang số. Trong cấu hình mạch thứ hai, chúng ta có thể đo nhiệt độ toàn dải từ -55oC đến 150oC. Cấu hình mạch này hơi phức tạp nhưng mang lại kết quả cao. Trong trường hợp này, chúng ta phải kết nối một điện trở bên ngoài (R1) để chuyển mức điện áp âm lên dương.

Giá trị điện trở bên ngoài có thể được tính toán theo công thức ghi bên dưới cấu hình mạch. Mặc dù cấu hình mạch đầu tiên không cần điện trở ở phía đầu ra nhưng tôi khuyên bạn nên kết nối điện trở 80 kΩ đến 100 kΩ giữa chân VOUT và chân GND. Khi tôi thực hiện một số thí nghiệm, tôi nhận thấy rằng các số đọc bị dao động và ngõ ra VOUT có hiện tượng thả nổi.

Vì vậy, một điện trở giữa VOUT và GND sẽ cố định chân VOUT ở mức thấp và ngăn không cho chân này bị thả nổi. Các thông số về độ chính xác cho cả hai cấu hình mạch là khác nhau. Mức độ chính xác trung bình là ± 1oC cho cả hai cấu hình. Nhưng mức độ chính xác giảm đối với khoảng nhiệt độ từ 2oC đến 25oC. 

f. Ứng dụng của cảm biến LM35 

Cảm biến nhiệt độ LM35 phù hợp cho các ứng dụng:

  • Học tập nghiên cứu
  • Đo nhiệt độ của một môi trường cụ thể
  • Giám sát nhiệt độ trong hệ thống HVAC
  • Kiểm tra nhiệt độ pin

2. Hướng dẫn đồ án Module Sim900A giao tiếp Arduino hiển thị nhiệt độ lm35

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng module sim

doc-cam-bien-nhiet-do-lm35-arduino-dien-thoai-bang-nhan-tin-goi-dien-module-sim900a-3

Phần mềm

#include <GPRS_Shield_Arduino.h>
#include <SoftwareSerial.h>
#include <Wire.h>

#define PIN_TX 8 /* rx of Arduino (connect tx of gprs to this pin) */
#define PIN_RX 7 /* tx of Arduino (connect rx of gprs to this pin) */
#define BAUDRATE 9600
#define PHONE_NUMBER "+84967551477"
#define MESSAGE_LENGTH 160

char message[MESSAGE_LENGTH]; /* buffer for storing message */
char phone[16]; /* buffer for storing phone number */
char datetime[24]; /* buffer for storing phone number */
int8_t messageIndex = 0;

/* Create an object named Sim900_test of the class GPRS */
GPRS Sim900_test(PIN_TX,PIN_RX,BAUDRATE);
const int8_t lm35_pin = A1;
void setup() {
Serial.begin(9600); /* Define baud rate for serial communication */
pinMode(4, OUTPUT);
while(!Sim900_test.init()) /* Sim card and signal check, also check if module connected */
{
delay(1000);
Serial.println("SIM900 initialization error");
}
Serial.println("SIM900 initialization success");
memset(message, 0, 160);
}

void loop() {
int16_t temp_adc_val;
float temp_val;
temp_adc_val = analogRead(lm35_pin); /* Read temperature from LM35 */
temp_val = (temp_adc_val * 4.88);
temp_val = (temp_val/10);
Serial.print("Temperature = ");
Serial.print(temp_val);
Serial.print(" Degree Celsius\n");

if(temp_val>35)
{
Serial.println("Need to cool down");
Serial.println("Calling to inform");
Sim900_test.callUp(PHONE_NUMBER); /* Call */
delay(25000);
Sim900_test.hangup(); /* Hang up the call */
int8_t count = 0;
messageIndex = Sim900_test.isSMSunread(); /* Check if new message available */
while( (messageIndex < 1) && !strstr( message,"Cool down") ) /* No new unread message */
{
if(count == 5)
{
messageIndex = Sim900_test.isSMSunread();
break;
}
count++;
delay(5000);
messageIndex = Sim900_test.isSMSunread();
}
while(messageIndex > 0 ) /* New unread message available */
{
Sim900_test.readSMS(messageIndex, message, MESSAGE_LENGTH, phone, datetime); /* Read message */
if(strstr( message,"Cool down"))
{
Serial.println("Turning fan ON");
digitalWrite(4, HIGH);
memset(message, 0, 160);
}
messageIndex = Sim900_test.isSMSunread();
}
delay(10000);
}
else
{
Serial.println("Everything is fine");
digitalWrite(4, LOW);
}
delay(3000);
}

3. Hoạt động của mạch điều khiển thiết bị bằng nhắn tin, gọi điện Sim900A

Khi cấp điện hệ thống hoạt động, các thiết bị ban đầu tắt, lúc này vi điều khiển chờ khoảng 10 đến 15 giây để module Sim900A khởi động xong. Khi khởi động xong vi điều khiển khởi tạo các tập lệnh AT cho module sim đã được định sẵn trong phần lập trình và gửi tin nhắn cho điện thoại để báo hiệu thành công. Khi nhấn nút trên hệ thống vi điều khiển đọc tín hiệu từ cảm biến nhiệt độ, lm35 gửi vào, khi nhận tín hiệu vi điều khiển xử lý và gửi tin nhắn cho điện thoại thông qua module Sim900A thông báo giá trị nhiệt độ, độ ẩm từ xa.

4. Cụ thể hoạt động của mạch điều khiển thiết bị bằng nhắn tin, gọi điện Sim900A giao tiếp Arduino

Chúc các bạn thành công…!!!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *