Lora UART giao tiếp Pic16F, Thu phát RF UART Lora SX1278 433Mhz

thu-phat-rf-uart-lora-sx1278-433mhz-giao-tiep-pic16f-dieu-khien-tu-xa-qua-bien-tro

Lora UART giao tiếp Pic16F sử dụng Mạch thu phát RF UART Lora SX1278 433Mhz 3000m EBYTE E32-433T20DC sử dụng chip SX1278 của nhà sản xuất SEMTECH chuẩn giao tiếp LORA (Long Range), chuẩn LORA mang đến hai yếu tố quan trọng là tiết kiệm năng lượng và khoảng cách phát siêu xa ( Ultimate long range wireless solution), ngoài ra nó còn có khả năng cấu hình để tạo thành mạng nên hiện tại được phát triển và sử dụng rất nhiều trong các nghiên cứu về IoT.

 

Liên hệ làm Đồ án và Mạch điện tử

 

Table of Contents

1. Linh kiện cần thiết làm mạch truyền nhận không dây bằng Thu phát Lora UART giao tiếp Pic16F

1.1 Vi điều khiển PIC trong mạch truyền nhận không dây bằng Thu phát Lora UART giao tiếp Pic16F

a. Giới thiệu

  • PIC là một họ vi điều khiển RISC được sản xuất bởi công ty Microchip Technology.
  • Dòng PIC đầu tiên là PIC1650 sau đó phát triển lên nhiều dòng khác nhau như:
  • Pic10F
  • Pic12F
  • Pic16F
  • Pic18F
  • Pic24F
  • Pic32F

Vi điều khiển Pic16f877a cắm và dán Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, … các ứng dụng của vi điều khiển

 
 

b. Đặc điểm thực thi tốc độ cao CPU RISC là:

  • Có 35 lệnh đơn.
  • Thời gian thực hiện tất cả các lệnh là 1 chu kì máy, ngoại trừ lệnh rẽ nhánh là 2.
  • Tốc độ hoạt động: + Ngõ vào xung clock có tần số 20MHz. + Chu kì lệnh thực hiện lệnh 200ns.
  • Có nhiều nguồn ngắt.
  • Có 3 kiểu định địa chỉ trực tiếp, gián tiếp và tức thời.

c. Cấu trúc đặc biệt của vi điều khiển

  • Bộ dao động nội chính xác + Sai số ± 1% + Có thể lựa chọn tần số từ 31 kHz đến 8 Mhz bằng phần mềm. + Cộng hưởng bằng phần mềm. + Chế độ bắt đầu 2 cấp tốc độ. + Mạch phát hiện hỏng dao động thạch anh cho các ứng dụng quan trọng. + Có chuyển mạch nguồn xung clock trong quá trình hoạt động để tiết kiệm công suất.
  • Có chế độ ngủ để tiết kiệm công suất.
  • Dãy điện áp hoạt động rộng từ 2V đến 5,5V.
  • Tầm nhiệt độ làm việc theo chuẩn công nghiệp.
  • Có mạch reset khi có điện (Power On Reset – POR).
  • Có bộ định thời chờ ổn định điện áp khi mới có điện (Power up Timer – PWRT) và bộ định thời chờ dao động hoạt động ổn định khi mới cấp điện (Oscillator Startup Timer – OST).
  • Có mạch tự động reset khi phát hiện nguồn điện cấp bị sụt giảm, cho phép lựa chọn bằng phần mềm (Brown out Reset – BOR).
  •  Có bộ định thời giám sát (Watchdog Timer – WDT) dùng dao động trong chip cho phép bằng phần mềm (có thể định thời lên đến 268 giây).
  • Đa hợp ngõ vào reset với ngõ vào có điện trở kéo lên.
  • Có bảo vệ code đã lập trình.
  • Bộ nhớ Flash cho phép xóa và lập trình 100,000 lần.
  • Bộ nhớ Eeprom cho phép xóa và lập trình 1,000,000 lần và có thể tồn tại trên 40 năm.
  • Cho phép đọc/ghi bộ nhớ chương trình khi mạch hoạt động.
  • Có tích hợp mạch gỡ rối.

d. Cấu trúc nguồn công suất thấp

  •  Chế độ chờ: dòng tiêu tán khoảng 50nA, sử dụng nguồn 2V.
  • Dòng hoạt động. + 11µA ở tần số hoạt động 32kHz, sử dụng nguồn 2V. + 220µA ở tần số hoạt động 4MHz, sử dụng nguồn 2V.
  • Bộ định thời Watchdog Timer khi hoạt động tiêu thụ 1,4µA, điện áp 2V.

e. Cấu trúc ngoại vi

  • Có 35 chân I/O cho phép lựa chọn hướng độc lập: + Mỗi ngõ ra có thể nhận/cấp dòng lớn khoảng 25mA nên có thể trực tiếp điều khiển led + Có các port báo ngắt khi có thay đổi mức logic. + Có các port có điện trở kéo lên bên trong có thể lập trình. + Có ngõ vào báo thức khỏi chế độ công suất cực thấp.
  • Có module so sánh tương tự: + Có 2 bộ so sánh điện áp tương tự + Có module nguồn điện áp tham chiếu có thể lập trình. + Có nguồn điện áp tham chiếu cố định có giá trị bằng 0,6V. + Có các ngõ vào và các ngõ ra của bộ so sánh điện áp. + Có chế độ chốt SR.
  • Có bộ chuyển đổi tương tự sang số: Có 14 bộ chuyển đổi tương tự với độ phân giải 10 bit.
  • Có timer0: 8 bit hoạt động định thời/đếm xung ngoại có bộ chia trước có thể lập trình.
  • Có timer1: + 16 bit hoạt động định thời/đếm xung ngoại có bộ chia trước có thể lập trình. + Có ngõ vào cổng của timer1 để có thể điều khiển timer1 đếm từ tín hiệu bên ngoài. + Có bộ dao động công suất thấp có tần số 32kHz.
  • Có timer2: 8 bit hoạt động định thời với thanh ghi chu kỳ, có bộ chia trước và chia sau.
  • Có module capture, compare và điều chế xung PWM+ nâng cao + Có bộ capture 16 bit có thể đếm được xung với độ phân giải cao nhất là 12,5ns. + Có bộ điều chế xung PWM với số kênh ngõ ra là 1, 2 hoặc 4, có thể lập trình với tần số lớn nhất là 20kHz. + Có ngõ ra PWM điều khiển lái.
  • Có module capture, compare và điều chế xung PWM + Có bộ capture 16 bit có thể đếm được xung với chu kỳ cao nhất là 12,5ns. + Có bộ so sánh 16 bit có thể so sánh xung đếm với chu kỳ lớn nhất là 200ns + Có bộ điều chế xung PWM có thể lập trình với tần số lớn nhất là 20kHz.
  • Có thể lập trình trên bo ISP thông qua 2 chân.
  • Có module truyền dữ liệu nối tiếp đồng bộ MSSP hổ trợ chuẩn truyền 3 dây SPI, chuẩn I2C ở 2 chế độ chủ và tớ.

f. Cấu trúc của vi điều khiển

cấu hình của vi điều khiển pic Sim800C giao tiếp Pic16F Các khối bên trong vi điều khiển bao gồm:
  • Có khối thanh ghi định cấu hình cho vi điều khiển.
  • Có khối bộ nhớ chương trình có nhiều dung lượng cho 5 loại khác nhau.
  • Có khối bộ nhớ ngăn xếp 8 cấp (8 level stack).
  • Có khối bộ nhớ Ram cùng với thanh ghi FSR để tính toán tạo địa chỉ cho 2 cách truy xuất gián tiếp và trực tiếp.
  • Có thanh ghi lệnh (Instruction register) dùng để lưu mã lệnh nhận về từ bộ nhớ chương trình.

 g. Cấu hình bên trong của vi điều khiển

cấu hình bên trong của vi điều khiển
  • Có thanh ghi trạng thái (status register) cho biết trạng thái sau khi tính toán của khối ALU.
  • Có thanh ghi FSR.
  • Có khối ALU cùng với thanh ghi working hay thanh ghi A để xử lý dữ liệu.
  • Có khối giải mã lệnh và điều khiển (Instruction Decode and Control).
  • Có khối dao động nội (Internal Oscillator Block).
  • Có khối dao động kết nối với 2 ngõ vào OSC1 và OSC2 để tạo dao động.
  • Có khối các bộ định thời khi cấp điện PUT, có bộ định thời chờ dao động ổn định, có mạch reset khi có điện, có bộ định thời giám sát watchdog, có mạch reset khi phát hiện sụt giảm nguồn.
  • Có khối bộ dao động cho timer1 có tần số 32kHz kết nối với 2 ngõ vào T1OSI và T1OSO.
  • Có khối CCP2 và ECCP.
  • Có khối mạch gỡ rối (In-Circuit Debugger IDC).
  • Có khối timer0 với ngõ vào xung đếm từ bên ngoài là T0CKI.
  • Có khối truyền dữ liệu đồng bộ/bất đồng bộ nâng cao.
  • Có khối truyền dữ liệu đồng bộ MSSP cho SPI và I2C.
  • Có khối bộ nhớ Eeprom 256 byte và thanh ghi quản lý địa chỉ EEADDR và thanh ghi dữ liệu EEDATA.
  • Có khối chuyển đổi tín hiệu tương tự sang số ADC.
  • Có khối 2 bộ so sánh với nhiều ngõ vào ra và điện áp tham chiếu.
  • Có khối các port A, B, C, E và D
sơ đồ chân vi dieu khiển

a. Chức năng các chân của portA

  • Chân RA0/AN0/ULPWU/C12IN0- (2): có 4 chức năng: + RA0: xuất/ nhập số – bit thứ 0 của port A. + AN0: ngõ vào tương tự của kênh thứ 0.
  • Chân RA1/AN1/C12IN1- (3): có 3 chức năng: + RA1: xuất/nhập số – bit thứ 1 của port A. + AN1: ngõ vào tương tự của kênh thứ 1
  • Chân RA2/AN2/VREF-/CVREF/C2IN+ (4): có 5 chức năng: + RA2: xuất/nhập số – bit thứ 2 của port A. + AN2: ngõ vào tương tự của kênh thứ 2. + VREF-: ngõ vào điện áp chuẩn (thấp) của bộ ADC. CVREF: điện áp tham chiếu VREF ngõ vào bộ so sánh.
  •  Chân RA3/AN3/VREF+/C1IN+ (5): có 4 chức năng: RA3: xuất/nhập số – bit thứ 3 của port A. AN3: ngõ vào tương tự kênh thứ 3. VREF+: ngõ vào điện áp chuẩn (cao) của bộ A/D. C1IN+: ngõ vào dương của bộ so sánh C1. Chân RA4/TOCKI/C1OUT (6): có 3 chức năng:
  •  RA4: xuất/nhập số – bit thứ 4 của port A. TOCKI: ngõ vào xung clock từ bên ngoài cho Timer0. C1OUT: ngõ ra bộ so sánh 1. Chân RA5/AN4/ SS / C2OUT (7): có 4 chức năng: RA5: xuất/nhập số – bit thứ 5 của port A. AN4: ngõ vào tương tự kênh thứ 4.  + SS : ngõ vào chọn lựa SPI tớ (Slave SPI device). C2OUT: ngõ ra bộ so sánh 2. 
  •  Chân RA6/OSC2/CLKOUT (14): có 3 chức năng: + RA6: xuất/nhập số – bit thứ 6 của port A. + OSC2: ngõ ra dao động thạch anh. Kết nối đến thạch anh hoặc bộ cộng hưởng.
  • Chân RA7/OSC1/CLKIN (13): có 3 chức năng. + RA7: xuất/nhập số – bit thứ 7 của port A. + OSC1: ngõ vào dao động thạch anh hoặc ngõ vào nguồn xung ở bên ngoài.

b. Chức năng các chân của portB

  • Chân RB0/AN12/INT (33): có 3 chức năng: + RB0: xuất/nhập số – bit thứ 0 của port B. + AN12: ngõ vào tương tự kênh thứ 12. INT: ngõ vào nhận tín hiệu ngắt ngoài. Chân RB1/AN10/C12IN3- (34): có 3 chức năng:
  •  RB1: xuất/nhập số – bit thứ 1 của port B. AN10: ngõ vào tương tự kênh thứ 10. C12IN3-: ngõ vào âm thứ 3 của bộ so sánh C1 hoặc C2. Chân RB2/AN8 (35): có 2 chức năng:
  •  RB2: xuất/nhập số – bit thứ 2 của port B. AN8: ngõ vào tương tự kênh thứ 8. Chân RB3/AN9/PGM/C12IN2 (36): có 4 chức năng:
  •  RB3: xuất/nhập số – bit thứ 3 của port B. AN9: ngõ vào tương tự kênh thứ 9. PGM: Chân cho phép lập trình điện áp thấp ICSP. C12IN1-: ngõ vào âm thứ 2 của bộ so sánh C1 hoặc C2 Chân RB4/AN11 (37): có 2 chức năng:
  •  RB4: xuất/nhập số – bit thứ 4 của port B. AN11: ngõ vào tương tự kênh thứ 11. Chân RB5/ AN13/T1G (38): có 3 chức năng:
  •  RB5: xuất/nhập số – bit thứ 5 của port B. AN13: ngõ vào tương tự kênh thứ 13. T1G (Timer1 gate input): ngõ vào Gate cho phép time1 đếm dùng để đếm độ rộng xung. + Chân RB6/ICSPCLK (39): có 2 chức năng:
  •  RB6: xuất/nhập số. + ICSPCLK: xung clock lập trình nối tiếp. Chân RB7/ICSPDAT (40): có 2 chức năng:
  •  RB7: xuất/nhập số. ICSPDAT: ngõ xuất nhập dữ liệu lập trình nối tiếp.

c. Chức năng các chân của portC

  • Chân RC0/T1OSO/T1CKI (15): có 3 chức năng: RC0: xuất/nhập số – bit thứ 0 của port C. T1OSO: ngõ ra của bộ dao động Timer1. T1CKI: ngõ vào xung clock từ bên ngoài Timer1.
  • Chân RC1/T1OSI/CCP2 (16): có 3 chức năng: RC1: xuất/nhập số – bit thứ 1 của port C. T1OSI: ngõ vào của bộ dao động Timer1. CCP2: ngõ vào Capture2, ngõ ra compare2, ngõ ra PWM2.
  •  Chân RC2 /P1A/CCP1 (17): có 3 chức năng: RC2: xuất/nhập số – bit thứ 2 của port C. P1A: ngõ ra PWM. CCP1: ngõ vào Capture1, ngõ ra compare1, ngõ ra PWM1.
  •  Chân RC3/SCK/SCL (18): có 3 chức năng: RC3: xuất/nhập số – bit thứ 3 của port C. SCK: ngõ vào xung clock nối tiếp đồng bộ/ngõ ra của chế độ SPI. SCL: ngõ vào xung clock nối tiếp đồng bộ/ngõ ra của chế độ I2C.
  •  Chân RC4/SDI/SDA (23): có 3 chức năng: RC4: xuất/nhập số – bit thứ 4 của port C. SDI: ngõ vào dữ liệu trong truyền dữ liệu kiểu SPI. SDA: xuất/nhập dữ liệu I2C.
  •  Chân RC5/SDO (24): có 2 chức năng: RC5: xuất/nhập số – bit thứ 5 của port C. SDO: ngõ xuất dữ liệu trong truyền dữ liệu kiểu SPI.
  •  Chân RC6/TX/CK (25): có 3 chức năng: RC6: xuất/nhập số – bit thứ 6 của port C. TX: ngõ ra phát dữ liệu trong chế độ truyền bất đồng bộ USART. CK: ngõ ra cấp xung clock trong chế độ truyền đồng bộ USART.
  •  Chân RC7/RX/DT (26): có 3 chức năng: RC7: xuất/nhập số – bit thứ 7 của port C. RX: ngõ vào nhận dữ liệu trong chế độ truyền bất đồng bộ EUSART. DT: ngõ phát và nhận dữ liệu ở chế độ truyền đồng bộ EUSART.

d. Chức năng các chân của portD

  •  Chân RD0 (19): có 1 chức năng: RD0: xuất/nhập số – bit thứ 0 của port D.
  •  Chân RD1 (20): có 1 chức năng: RD1: xuất/nhập số – bit thứ 1 của port D.
  • Chân RD2 (21): có 1 chức năng: RD2: xuất/nhập số – bit thứ 2 của port D.
  •  Chân RD3 (22): có 1 chức năng: RD3: xuất/nhập số – bit thứ 3 của port D.
  •  Chân RD4 (27): có 1 chức năng: RD4: xuất/nhập số – bit thứ 4 của port D.
  •  Chân RD5/ P1B (28): có 2 chức năng: RD5: xuất/nhập số – bit thứ 5 của port D. P1B: ngõ ra PWM.
  •  Chân RD6/ P1C (29): có 2 chức năng: RD6: xuất/nhập số – bit thứ 6 của port D. P1C: ngõ ra PWM.
  •  Chân RD7/P1D (30): có 2 chức năng: RD7: xuất/nhập số – bit thứ 7 của port D. P1D: ngõ ra tăng cường CPP1

e. Chức năng các chân của portE

  •  Chân RE0/AN5 (8): có 2 chức năng: RE0: xuất/nhập số. AN5: ngõ vào tương tự 5.
  •  Chân RE1/AN6 (9): có 2 chức năng: RE1: xuất/nhập số. AN6: ngõ vào tương tự kênh thứ 6.
  •  Chân RE2/AN7 (10): có 2 chức năng: RE2: xuất/nhập số. AN7: ngõ vào tương tự kênh thứ 7.
  •  Chân RE3/ MCLR /VPP (1): có 3 chức năng: RE3: xuất/nhập số – bit thứ 3 của port E. MCLR : là ngõ vào reset tích cực mức thấp. VPP: ngõ vào nhận điện áp khi ghi dữ liệu vào bộ nhớ nội flash. Chân VDD (11), (32): Nguồn cung cấp dương từ 2V đến 5V. Chân VSS (12), (31): Nguồn cung cấp 0V.

1.2 Module Thu phát Lora UART giao tiếp Pic16F truyền nhận không dây

a. Giới thiệu Thu phát Lora UART

Mạch thu phát RF UART Lora SX1278 433Mhz 3000m EBYTE E32-433T20DC sử dụng chip SX1278 của nhà sản xuất SEMTECH chuẩn giao tiếp LORA (Long Range), chuẩn LORA mang đến hai yếu tố quan trọng là tiết kiệm năng lượng và khoảng cách phát siêu xa ( Ultimate long range wireless solution), ngoài ra nó còn có khả năng cấu hình để tạo thành mạng nên hiện tại được phát triển và sử dụng rất nhiều trong các nghiên cứu về IoT. Mạch thu phát RF UART Lora SX1278 433Mhz 3000m EBYTE E32-433T20DC được tích hợp phần chuyển đổi giao tiếp SPI của SX1278 sang UART giúp việc giao tiếp và sử dụng rất dễ dàng, chỉ cần kết nối với Software của hãng để cấu hình địa chỉ , tốc độ và công suất truyền là có thể sử dụng (cần mua thêm mạch chuyển USB-UART để kết nối máy tính). thu-phat-rf-uart-lora-sx1278-433mhz-giao-tiep-arduino-dieu-khien-tu-xa-qua-bien-tro

b. Thông số kỹ thuật Thu phát Lora UART giao tiếp Pic16F

  • Model: EBYTE E32-433T20DC Lora SX1278 433Mhz
  • IC chính: SX1278 từ SEMTECH.
  • Điện áp hoạt đông: 2.3 – 5.5 VDC
  • Điện áp giao tiếp: TTL-3.3V
  • Giao tiếp UART Data bits 8, Stop bits 1, Parity none, tốc độ từ 1200 – 115200.
  • Tần số: 410 – 441Mhz
  • Công suất: 20dbm (100mW)
  • Khoảng cách truyền tối đa trong điều kiện lý tưởng: 3000m
  • Tốc độ truyền: 0.3 – 19.2 Kbps ( mặc định 2.4 Kbps)
  • 512bytes bộ đệm.
  • Hỗ trợ 65536 địa chỉ cấu hình.
  • Kích thước: 21x36mm.

c. Sơ đồ chân vào chức năng Thu phát Lora UART

Số chân        Tên chân          Chức năng chân 1                    M0                  Thiết lập chế độ Mode giao tiếp 2                    M1                  Thiết lập chế độ Mode giao tiếp 3                    RXD                Kết nối giao tiếp chuẩn UART chân nhận dữ liệu 4                    TXD                 Kết nối giao tiếp chuẩn UART chân truyền dữ liệu 5                    AUX                Không kết nối 6                    VCC                Chân cấp nguồn 5V cho Lora sx1278 7                    GND                Chân cấp nguồn 0V cho Lora sx1278  

d. Ứng dụng Thu phát Lora UART giao tiếp Pic16F

  • Bàn phím, chuột không dây
  • Game controller
  • Điều khiển từ xa
  • Nhà thông minh và tự động hóa
  • Hệ thống giám sát không dây
  • Hệ thống cảm biến tiết kiệm điện
  • Internet of Things

e. Hướng dẫn sử dụng Thu phát Lora UART

Để board hoạt động truyền nhận bình thường ta cần set 2 chân M0 và M1 về mức 0, ngoài ra ta có thể kết nối 2 chân này với 2 chân GPIO của vi điều khiển để cài đặt các chế độ hoạt động của module, bạn có thể tham khảo bảng sau:  

Mode(03)

M1

M0

Mode introduction

Remark

Mode 0 Normal

0

0

Serial port open, wireless channel open, transparent transmission.The receiver must be in mode 0 or mode 1

Mode 1 Wake-up

0

1

Serial port open, wireless open. The difference between normal mode and wake-up mode is it will increase wake-up code automatically before data packet transmission so that it can awaken the receiver working under mode 2The receiver could be in mode 0, mode 1 or mode 2.

Mode 2 Power saving

1

0

Serial port closed, wireless is under the air wake-up mode. It will open the serial port and transmit data after receiving the wireless data.1, the transmitter should be in mode 1 2, cannot transmit under this mode

Mode 3 Sleep

1

1

The mode will sleep and can receive parameter setting command.For details, pls refer the operating parameter elaboration

1.3 Oled cho đề tài mạch truyền nhận không dây bằng Thu phát Lora UART giao tiếp Pic16F

a. Giới thiệu

Màn hình Oled 1.3 inch giao tiếp I2C cho khả năng hiển thị đẹp, sang trọng, rõ nét vào ban ngày và khả năng tiết kiệm năng lượng tối đa với mức chi phí phù hợp, màn hình sử dụng giao tiếp I2C cho chất lượng đường truyền ổn định và rất dễ giao tiếp chỉ với 2 chân GPIO. Màn hình OLED SH1106 với kích thước 1.3 inch, cho khả năng hiển thị hình ảnh tốt với khung hình 128×64 pixel. Ngoài ra, màn hình còn tương thích với hầu hết các vi điều khiển hiện nay thông qua giao tiếp SPI. Màn hình sử dụng driver SH1106 cùng thiết kế nhỏ gọn sẽ giúp bạn phát triển các sản phẩm DIY hoặc các ứng dụng khác một cách nhanh chóng. màn hình oled 1.3in chuẩn i2c Lora UART giao tiếp Atmega

Màn hình Oled chuẩn truyền I2C

màn hình oled chuẩn truyền SPI Lora UART giao tiếp Atmega

Màn hình Oled chuẩn truyền SPI

b. Thông số kỹ thuật

  • Điện áp sử dụng: 2.2~5.5VDC
  • Công suất tiêu thụ: 0.04w
  • Góc hiển thị: lớn hơn 160 độ
  • Số điểm hiển thị: 128×64 điểm.
  • Độ rộng màn hình: 1.3 inch.
  • Màu hiển thị: Trắng / Xanh Dương.
  • Giao tiếp: I2C hoặc SPI tùy loại
  • Driver: SH1106
  • Kích thước 1.3 inch (128x64px)
  • Góc nhìn tối đa: 160°
  • Nhiệt độ làm việc: -30°V đến 80°C
  • Tương thích với hầu hết các board như: Arduino, ESP8266, ESP32, STM32,

Lưu ý khi dùng Oled 1.3in Hiện trên thị trường sẽ có: +  2 loại chính là 0.96in1.3in +  2 mã số là SH1106SH1306 +  2 chuẩn truyền SPII2C Vì thế việc lựa chọn đúng đối tượng để lập trình mới có thể hiển thị được thông tin mong muốn.

2. Hướng dẫn đồ án thu phát Lora UART giao tiếp Pic16F điều khiển độ sáng đèn qua nút nhấn

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng

thu-phat-rf-uart-lora-sx1278-433mhz-giao-tiep-arduino-dieu-khien-tu-xa-qua-bien-tro-2

Phần mềm

  • Các thư viện khác hổ trợ tải trên phần mềm Arduino IDE
Bên phát có điều khiển bằng nút nhấn
#include <SoftwareSerial.h>
#define BTN1  4
#define BTN2  5  

SoftwareSerial loraSerial(2, 3); // TX, RX

String turnOn = "on";
String turnOff = "off";

void setup() 
{
  pinMode(BTN1, INPUT_PULLUP);
  pinMode(BTN2, INPUT_PULLUP);
  Serial.begin(9600);
  loraSerial.begin(9600); 
}

void loop() 
{
    if(digitalRead(BTN1) == 0) {
    loraSerial.print(turnOn);
    while(digitalRead(BTN1) == 0);
    delay(50);
  }

  if(digitalRead(BTN2) == 0) {
    loraSerial.print(turnOff);
    while(digitalRead(BTN2) == 0);
    delay(50);
  }
}
Bên thu hiển thị ra led hoặc relay bóng đèn
#include <SoftwareSerial.h>
#define LED1  4  

SoftwareSerial loraSerial(2, 3); // TX, RX

void setup() {
  pinMode(LED1, OUTPUT);
  Serial.begin(9600);
  loraSerial.begin(9600);  
}

void loop() { 
  if(loraSerial.available() > 1){
    String input = loraSerial.readString();
    Serial.println(input);  
    if(input == "on") {
      digitalWrite(LED1, HIGH);  
    } 
    if(input == "off") {
      digitalWrite(LED1, LOW);
    }
  }
  delay(20);
}

3. Hoạt động của mạch truyền nhận dữ liệu không dây bằng Thu phát Lora UART giao tiếp Pic16F

Khi cấp điện hệ thống hoạt động, vi điều khiển đưa tín hiệu ban đầu cho oled hiển thị thông tin người dùng, lúc này vi điều khiển kiểm tra có Thu phát rf uart Lora sx1278 được sử dụng không, nếu không có thì sẽ báo lỗi và chờ đến khi được gắn vào, ngược lại thì vi điều khiển cho phép truyền hoặc nhận tùy theo bên thu hoặc bên phát đã được quy định từ trước. Khi nhận được tín hiệu từ bên phát gửi qua bên thu thông qua việc nút nhấn thì Thu phát rf uart Lora sx1278 đưa dữ liệu vào vi điều khiển xử lý và xuất ra ngoài màn hình để hiển thị theo những gì đã được quy định bên mạch phát. 

4. Cụ thể hoạt động của mạch truyền nhận không dây bằng Thu phát Lora UART giao tiếp Pic16F

Chúc các bạn thành công…!!!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *