Table of Contents
1. Linh kiện cần thiết làm mạch cảm biến Line giao tiếp Arduino
1.1 Vi điều khiển AVR Line giao tiếp Atmega
a. Giới thiệu
Atmega16 là một chíp vi điều khiển được sản xuất bời hãng Atmel thuộc họ MegaAVR. Atmega16 là một bộ vi điều khiển 8 bit dựa trên kiến trúc RISC bộ nhớ chương trình 16KB ISP flash có thể ghi xóa hàng nghìn lần, 512B EEPROM, một bộ nhớ RAM vô cùng lớn trong thế giới vi xử lý 8 bit (1KB SRAM) Với 32 chân có thể sử dụng cho các kết nối vào hoặc ra i/O, 32 thanh ghi, 3 bộ timer/counter có thể lập trình, có các gắt nội và ngoại (2 lệnh trên một vector ngắt), giao thức truyền thông nối tiếp USART, SPI, I2C. Ngoài ra có thể sử dụng bộ biến đổi số tương tự 10 bít (ADC/DAC) mở rộng tới 8 kênh, khả năng lập trình được watchdog timer, hoạt động với 5 chế độ nguồn, có thể sử dụng tới 6 kênh điều chế độ rộng xung (PWM), hỗ trợ bootloader. Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, …b. Chức năng của Atmega:
- PORTA: Các chân từ 33 đến 40 thuộc PORTA. Nó hoạt động giống như đầu vào analog cho bộ chuyển đổi A / D. Tuy nhiên, trong trường hợp không có bộ chuyển đổi A / D, PORTA được sử dụng làm cổng I / O hai chiều 8 bit. Nó đi kèm với điện trở kéo bên trong.
- PORTB: Các chân từ 1 đến 8 thuộc về PORTB. Đây là các chân hai chiều I / O. Cổng này cũng bao gồm các điện trở kéo lên bên trong.
- PORTC: PORTC là cổng I / O hai chiều bao gồm 8 chân. Chân từ 22 đến 29 thuộc về cổng này, tương tự như các cổng khác, nó đi kèm với điện trở kéo bên trong.
- PORTD: Chân từ 14 đến 21 thuộc về cổng này. Đây là cổng hai chiều trong đó mỗi chân có thể được sử dụng làm chân đầu vào hoặc đầu ra. Tuy nhiên, có các tính năng bổ sung liên quan đến cổng này như ngắt, giao tiếp nối tiếp, bộ hẹn giờ và PWM.
Các chức năng khác
- Reset: Chân 9 là chân reset mức thấp đang hoạt động. Xung mức thấp dài hơn độ dài xung tối thiểu sẽ tạo ra reset. Các xung ngắn không có khả năng tạo ra reset.
- VCC: Chân 10 là chân cấp nguồn cho bộ điều khiển này. Nguồn điện của cần phải có 5 V để đặt bộ điều khiển này trong điều kiện đang chạy.
- GND: Chân 11 là chân nối đất.
- AREF: Chân 32 là chân tham chiếu tương tự chủ yếu được sử dụng cho bộ chuyển đổi A / D .
- AVCC: Chân 30 là AVCC là chân điện áp cung cấp cho PORTA và ADC. Nó được kết nối với VCC thông qua bộ lọc thông thấp khi có ADC. Tuy nhiên, trong trường hợp không có ADC, AVCC được kết nối bên ngoài với VCC.
- Chân 12 & 13: Một bộ dao động tinh thể được kết nối với các chân này. Atmega16 hoạt động ở tần số bên trong 1MHZ; bộ dao động được thêm vào để tạo ra xung clock và tần số cao.
c.Thông số kỹ thuật Atmega (Dip)
Datasheets | Atmega16 |
Standard Package | 27 |
Category | Integrated Circuits (ICs) |
Family | Embedded – Atmel |
Series | Atmega |
Packaging | Tube |
Core Processor | AVR |
Core Size | 8-Bit |
Speed | 16MHz |
Connectivity | I²C, SPI, UART / USART, USB |
Peripherals | Brown-out Detec t/ Reset, HLVD, POR, PWM, WDT |
Number of I /O | 32 |
Program Memory Size | 16KB |
Program Memory Type | FLASH |
EEPROM Size | 512B |
RAM Size | 1K |
Voltage – Supply (Vcc/Vdd) | 4.2 V ~ 5.5 V |
Data Converters | A/D 8 x 10bit |
Oscillator Type | Internal |
Operating Temperature | -40°C ~ 85°C |
Package / Case | 28-SOIC (0.295″, 7.50mm Width) |
Other Names | Atmega16 |
d. Power
- 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
- GND: Là chân mang điện cực âm trên board.
- IOREF: Điệp áp hoạt động của vi điều khiển trên AVR và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.
e.Bộ nhớ
Vi điều khiển ATmega:- 16 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
- 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
- 512B cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.
f. Kiến trúc của Atmega16
Kiến trúc của Atmega16 dựa trên Kiến trúc Harvard và đi kèm với các bus và bộ nhớ riêng biệt. Các lệnh được lưu trữ trong bộ nhớ chương trình.- CPU
- ROM
- RAM
EEPROM
- Ngắt
- Module I / O analog và kỹ thuật số
Bộ định thời / Bộ đếm
- Watchdog timer
- Giao tiếp nối tiếp
1.2 Cảm biến Line giao tiếp Atmega
a. Giới thiệu
Line giao tiếp Atmega là dùng Cảm biến dò line có thể dùng để phát hiện line trắng và đen. Mạch sử dụng cảm biến hồng ngoại TCRT5000 với khoảng cách phát hiện từ 1~25mm giúp dễ dàng trong quá trình cài đặt module lên thiết bị. Mạch cảm biến dò line thích hợp dùng cho các thiết bị cần di chuyển theo line, thiết bị phát hiện màu trắng, đen,… Có thể dễ dàng điều chỉnh độ nhạy của cảm biến qua biến trở được thiết kế sẵn trên board. Mạch cảm biến dò line 4 chân hoặc 3 chân đối với loại đơn và 8 chân đối với loại 5 line thích hợp dùng cho các thiết bị cần di chuyển theo line, thiết bị phát hiện màu trắng, đen,…b. Thông số kỹ thuật
- Nguồn cung cấp: 5VDC.
- Mạch sử dụng chip so sánh LM393.
- Dòng điện tiêu thụ: <10mA.
- Dải nhiệt độ hoạt động: 0oC ~ 50oC.
- Ngõ giao tiếp: 3 dây VCC, GND, DO
- Mức tín hiệu ngõ ra: TTL.
- Kích thước: 3.2 x 1.4mm.
c. Nguyên lý hoạt động
- Kết nối GND với GND, VCC đến 2.4-5VDC.
- Để có hiệu suất tốt nhất, hãy sử dụng nguồn cung cấp ổn định nhất (trên Arduino, đây sẽ là nguồn cung cấp 3.3V).
- Dạng nhận biết màu trắng hoặc đen thông qua xuất hiện từ chân OUT.
- Các đầu ra sẽ có tín hiệu logic khác nhau phù hợp cho màu trắng hoặc đen.
d. Ứng dụng
Cảm biến này có thể được sử dụng để xây dựng các mạch điện tử khác nhau- Hệ thống phân biệt màu sản phẩm trắng và đen
- Mạch gián điệp
- Tự động hóa trong gia đình
- Người máy
- Mạch xe vận chuyển dò line
- Nhận biết trời sáng hoặc tối
- Nhận diện phát hiện bật cản
1.3 Module l298 điều khiển động cơ dc dùng Line giao tiếp Atmega
a. Giới thiệu
Module điều khiển động cơ L298 ( mạch cầu H L298) là một module hưu ích, phổ biến với chức năng thông dụng và giá thành cực kỳ rẻ là lựa chọn của các bạn học sinh, sinh viên. Mạch này có thể điều khiển được 2 động cơ. Ứng dụng rất nhiều vào các đề tài: điều khiển xe robot, điều khiển cánh tay robot (Cánh tay robot 3 bậc bạn phải sử dụng tới 2 mô đun này), Arduino để điều khiển động cơ sử dụng mô đun điều khiển động cơ… Module l298 điều khiển được các động cơ như motor giảm tốc, motor mini, động cơ bước, động cơ servo, động cơ dcb. Thông số kỹ thuật
- Driver: L298N tích hợp hai mạch cầu H.
- Điện áp điều khiển: +5 V ~ +35 V
- Dòng tối đa cho mỗi cầu H là: 2A
- Điện áp của tín hiệu điều khiển: +5 V ~ +7 V
- Dòng của tín hiệu điều khiển: 0 ~ 36mA
- Công suất hao phí: 20W (khi nhiệt độ T = 75 ℃)
- Nhiệt độ bảo quản: -25 ℃ ~ +130 ℃
c. Sơ đồ chân module L298
- 12V power, 5V power: là 2 chân cấp nguồn trực tiếp đến động cơ .
- Power GND : là chân GND cấp nguồn cho động cơ
- 2 Jump A enable và B enable dùng cho phép động cơ chạy hoặc dừng
- IN1, IN2, IN3, IN4: Là 4 chân input , chức năng nhận tín hiệu từ vi điều khiển hoặc Arduino để điều khiển động cơ
- Output A: nối với động cơ A. bạn chú ý chân +, -. Nếu bạn nối ngược thì động cơ sẽ chạy ngược. Và chú ý nếu bạn nối động cơ bước, bạn phải đấu nối các pha cho phù hợp
1.4 Động cơ dc 12v giảm tốc V1 dùng Line giao tiếp Atmega
a. Giới thiệu
- Động cơ DC giảm tốc V1 là loại được lựa chọn và sử dụng nhiều nhất hiện nay cho các thiết kế Robot đơn giản, động cơ DC giảm tốc V1 có chất lượng và giá thành vừa phải cùng với khả năng dễ lắp ráp của nó đem đến chi phí tiết kiệm và sự tiện dụng cho người sử dụng, các bạn khi mua động cơ giàm tốc V1 có thể mua thêm gá bắt động cơ vào thân Robot cũng như bánh xe tương thích.
- Động cơ DC giảm tốc V1 1:48 hộp số kim loại có trục quay và bánh răng của hộp số được làm bằng kim loại cho tuổi thọ và độ bền cao hơn các loại bằng nhựa (các loại bằng nhựa khi chạy 1 thời gian sẽ bị tình trạng các bánh răng nhựa bị rơ, kẹt khiến cho vận tốc động cơ thay đổi theo thời gian), thích hợp để lắp ráp các mô hình Robot, Cơ khí đơn giản.
b. Thông số kỹ thuật
- Điện áp hoạt động: 3V~ 9V DC (Hoạt động tốt nhất từ 6 – 8V)
- Dòng không tải: 70mA (250mA MAX)
- Mômen xoắn cực đại: 800gf cm min 1:48 (3V)
- Tốc độ không tải: 125 Vòng/ 1 Phút (3V) (Với bánh 66mm: 26m/1p) 208 Vòng/ 1 Phút (5V) (Với bánh 66mm: 44m/1p)
1.5 Khung xe dùng Line giao tiếp Atmega
a. Giới thiệu
Khung xe robot 3 bánh được thiết kế phù hợp với các yêu cầu chế tạo robot dò đường, robot do thám, robot tránh vật cản, có thể lắp ghép với cánh tay robot để điều khiển. Là sản phẩm để làm robot mô hình, đặc biệt phù hợp với Arduino. Xe được thiết kế rất đẹp, chắc chắn có thể hoạt động linh hoạt, các bánh xe được lắp ghép đối xứng, giữ cân bằng và chính xác trong di chuyển. Trọn bộ khung xe robot 3 bánh bao gồm đầy đủ các chi tiết được lắp ghép gọn gàng.b. BÁNH XE
Có 2 bánh cố định được gắn chặt với động cơ làm nhiệm vụ truyền lực cho xe chạy: được làm bằng nhựa, lốp xe làm bằng cao su mềm, có độ bám đường tốt, chắc chắn. Kích thước đường kính bánh xe 65mm. 1 bánh xe dẫn động giúp xe chạy đa hướng. Vật liệu từ nhựa và thép, có vòng bi xoay.c. ĐỘNG CƠ
2 Động cơ có hộp giảm tốc, có thể lập trình băm xung để điều chỉnh tốc độ của động cơ. Sử dụng nguồn nuôi có mức điện áp hoạt động 3 – 6V.d. KHUNG XE ROBOT 3 BÁNH
Được làm bằng nhựa có nhiều lỗ sẵn để bắt ốc vào những vị trí cần thiết để gắn board mạch Arduino, đế pin, công tắc, động cơ, bánh trước để gắn các board mạch gắn cảm biến. Kích thước của khung là 220×150mm.2. Hướng dẫn đồ án Line giao tiếp Atmega điều khiển xe dò line
Phần này chưa được chia sẻ.
LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.
Phần cứng
Phần mềm
// Định nghĩa các chân int ENA = 3; int IN1 = 1; int IN2 = 2; int ENB = 6; int IN3 = 4; int IN4 = 5; // tốc độ động cơ là 80 #define ENASpeed 80 #define ENBSpeed 80 // khai báo tất cả các cảm biến điều không tín hiệu) int Sensor1 = 0; int Sensor2 = 0; int Sensor3 = 0; int Sensor4 = 0; void setup() { pinMode(ENA, OUTPUT); pinMode(IN1, OUTPUT); pinMode(IN2, OUTPUT); pinMode(ENB, OUTPUT); pinMode(IN3, OUTPUT); pinMode(IN4, OUTPUT); pinMode(Sensor1, INPUT); pinMode(Sensor2, INPUT); pinMode(Sensor3, INPUT); pinMode(Sensor4, INPUT); } void loop(){ //đọc giá trị các chân analogWrite(ENA, ENASpeed); analogWrite(ENB, ENBSpeed); // đọc cảm biến là sáng nếu vào đường đen, đèn cảm biến tắt khi lệch đường Sensor1 = digitalRead(8); Sensor2 = digitalRead(9); Sensor3 = digitalRead(10); Sensor4 = digitalRead(11); if(Sensor4 == HIGH && Sensor3 == HIGH && Sensor2 == LOW && Sensor1 == LOW){ // rẻ trái nếu cảm biến 3 và 4 lệch đường //động cơ trái dừng digitalWrite(IN1, LOW); digitalWrite(IN2, LOW); //motor B Forward // động cơ phải tiến digitalWrite(IN3, LOW); digitalWrite(IN4, HIGH); } else if (Sensor4 == LOW && Sensor3 == LOW && Sensor2 == HIGH && Sensor1 == HIGH){ // rẻ trái nếu cảm biến 1 và 2 lệch đường // động cơ trái tiến digitalWrite(IN1, LOW); digitalWrite(IN2, HIGH); //động cơ phải dừng digitalWrite(IN3, LOW); digitalWrite(IN4, LOW); } else if (Sensor4 == LOW && Sensor3 == LOW && Sensor2 == LOW && Sensor1 == LOW){ //tất cả động cơ dừng lại nếu xe hoàn toàn lệch khỏi đường digitalWrite(IN1, LOW); digitalWrite(IN2, LOW); digitalWrite(IN3, LOW); digitalWrite(IN4, LOW); } else if (Sensor4 == HIGH && Sensor3 == HIGH && Sensor2 == HIGH && Sensor1 == HIGH){ //tất cả động cơ dừng lại nếu tất cả cá cảm biến điều trên đường digitalWrite(IN1, LOW); digitalWrite(IN2, LOW); digitalWrite(IN3, LOW); digitalWrite(IN4, LOW); } else{ //if(Sensor4 == LOW && Sensor3 == HIGH && Sensor2 == HIGH && Sensor1 == LOW // nếu cảm biến 4 và 1 nằm ngoài đường đen, cảm biến 2,3 trên đường đen thì xe chạy tới digitalWrite(IN1, LOW); digitalWrite(IN2, HIGH); digitalWrite(IN3, LOW); digitalWrite(IN4, HIGH); } }
3. Hoạt động của mạch cảm biến line giao tiếp Atmega
Khi cấp điện hệ thống hoạt động, vi điều khiển hiển thị thông tin ban đầu. lúc này vi điều khiển chờ tín hiệu từ module cảm biến line gửi vào. Khi nhận tín hiệu từ cảm biến dò line giao tiếp Atmega thì kích xe hoạt động theo line đã được lập trình quy định.4. Hoạt động mạch cảm biến line giao tiếp Atmega các bạn xem video:
Ngoài ra còn nhiều Phần và các môn khác
Đồ án điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 1 Mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 2 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Vi xử lý, Lập trình vi điều khiển Pic – 8051 – Avr – Phần 4 Tổng hợp File ĐỒ ÁN Điện tử cơ bản Tổng hợp File ĐỒ ÁN Viễn thông Tổng hợp File ĐỒ ÁN PLC Tổng hợp File ĐỒ ÁN Cung cấp điện
Chúc các bạn thành công…!!!