L3G4200 giao tiếp At89s52, Cảm biến gia tốc + LCD1602 + 8051

cam-bien-gia-toc-L3G4200-giao-tiep-at89s52-hien-thi-lcd1602
L3G4200 giao tiếp At89s52 dùng Cảm biến Gyro 3 trục L3G4200D được sử dụng để đo góc quay của vật thể gắn cảm biến theo ba trục x, y, z, cảm biến có độ phân giải rất cao (16 bit) có để đo ở tốc độ 2000 độ/giây (dps) ổn định mà không bị ảnh hưởng bởi nhiệt độ hơn nhiều loại cảm biến có sẵn trên thị trường hiện nay. Cảm biến Gyro 3 trục L3G4200D có thể giao tiếp qua giao tiếp I2C hoặc SPI, nếu xử dụng giao tiếp I2C các bạn chỉ cần hàn 1 số jumper để chọn địa chỉ trên board, cảm biến còn tích hợp thêm 32 thanh ghi buffer FIFO giúp bạn có thể truy xuất dữ liệu nhanh và thuận tiện hơn làm giảm độ xử lý của Vi điều khiển.
Liên hệ làm Đồ án và Mạch điện tử Phone : 0967.551.477 Zalo    : 0967.551.477 FB      : Huỳnh Nhật Tùng Email : dientunhattung@gmail.com Địa Chỉ: 171/25 Lê Văn Thọ, P8, Gò Vấp, Tp HCM Chi tiết: Nhận làm mạch và đồ án Điện tử  

1. Linh kiện cần thiết làm mạch cảm biến gia tốc L3G4200 giao tiếp At89s52

1.1 Vi điều khiển 8051 trong mạch cảm biến gia tốc L3G4200 giao tiếp At89s52

a. Giới thiệu

At89s52 là một chíp vi điều khiển được sản xuất bời hãng Atmel thuộc họ 8051. At89s52 là một bộ vi điều khiển 8 bit dựa trên kiến trúc RISC bộ nhớ chương trình 8KB ISP flash có thể ghi xóa hàng nghìn lần, một bộ nhớ RAM vô cùng lớn trong thế giới vi xử lý 8 bit (256x8KB SRAM) Với 32 chân có thể sử dụng cho các kết nối vào hoặc ra i/O, 32 thanh ghi, 3 bộ timer/counter có thể lập trình, có các gắt nội và ngoại (2 lệnh trên một vector ngắt), giao thức truyền thông nối tiếp USART, SPI. Khả năng lập trình được watchdog timer, hoạt động với 5 chế độ nguồn. review-do-an-8051-at89s52 Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, … các ứng dụng của vi điều khiển

b. Chức năng của At89s52:

 
Số chânTên chânĐặc điểm
32-39Port 08 chân Địa chỉ và Dữ liệu / GPIO
1-8Port 18 chân GPIO 
21-28Port 28 chân GPIO
10-17Port 38 chân GPIO
9RSTChân Reset
18XTAL2Chân đầu ra của bộ tạo dao động bên ngoài
19XTAL1Chân đầu vào bộ tạo dao động bên ngoài
20GNDChân nối đất
40VCCChân cấp điện
31EA / VPPKích hoạt truy xuất bên ngoài / chân cấp nguồn kích hoạt Flash
30ALE / PROGChân chốt địa chỉ / Chân lập trình flash
29PSENChân cho phép lưu chương trình
Chân Port 0
Tất cả các cổng của AT89S52 là 8-bit có nghĩa là mỗi port có 8 chân đa chức năng. Các chân đầu vào / đầu ra này có thể được cấu hình cho các chức năng khác bằng cấu hình cách các thanh ghi cấu hình.  Nếu chúng ở trạng thái mức thấp, chúng hoạt động như các chân đầu vào trở kháng cao hai chiều. Nhưng nếu chúng được kéo lên mức cao, chúng được sử dụng làm chân đầu ra digital. Các chân Port0 cũng được sử dụng để cập nhật các byte thấp trong code đến bộ nhớ chương trình bên trong của vi điều khiển AT89S52 và cũng được sử dụng để xác nhận code đã được cập nhật. Khi sử dụng các chân này để lập trình, chúng ta cần kết nối các chân này với các điện trở kéo lên bên ngoài.
Chân Port 1
Tương tự như port 0, Port1 cũng có các chân dữ liệu 2 chiều 8 bit với các điện trở kéo lên bên trong. Một số chân GPIO này được sử dụng giao tiếp lập trình hệ thống trong mạch và một số được sử dụng làm chức năng thay thế cho ba chân bộ định thời / bộ đếm 16 bit.
Số chânChức năng
P1.0T2
P1.1T2EX
P1.5MOSI
P1.6MISO
P1.7SCK
Chân Port 2
Giống như Port 1, Port2 cũng có các chân dữ liệu 2 chiều 8 bit với các điện trở kéo lên bên trong. Một số chân GPIO này được sử dụng để giao tiếp lập trình hệ thống trong mạch và một số chân được sử dụng làm chức năng thay thế cho ba chân Bộ định thời / Bộ đếm 16 bit. Các chân Port2 cũng được sử dụng để cập nhật các byte cao trong code lên bộ nhớ chương trình bên trong của vi điều khiển AT89S52 và cũng được sử dụng để xác nhận code đã được cập nhật. Khi sử dụng các chân này để lập trình, chúng ta cần kết nối các chân này với các điện trở kéo lên bên ngoài. Chân port 3 Port 3 cũng là một cổng 8-bit và có 8 chân GPIO. Ngoài chức năng nhập / xuất, các chân này còn có một số tính năng đặc biệt.  Cổng 3 cũng được sử dụng để truyền dữ liệu nối tiếp UART, ngắt ngoài và thực hiện các thao tác đọc / ghi bộ nhớ dữ liệu bên ngoài.
Số chânChức năng
P3.0RXD
P3.1TXD
P3.2INT0
P3.3INT1
P3.4T0
P3.5T1
P3.6WR
P3.7RD
Tất cả các chân này là chân dữ liệu hai chiều và tương thích với chuẩn TTL. Chúng có thể là nguồn dòng sink hay source và tất cả đều có điện trở kéo lên bên trong để xác định đúng trạng thái.

Các chức năng khác

  • Reset: Chân 9 là chân reset mức thấp đang hoạt động. Xung mức thấp dài hơn độ dài xung tối thiểu sẽ tạo ra reset. Các xung ngắn không có khả năng tạo ra reset.
  • VCC: Chân 10 là chân cấp nguồn cho bộ điều khiển này. Nguồn điện của cần phải có 5 V để đặt bộ điều khiển này trong điều kiện đang chạy. 
  • GND: Chân 11 là chân nối đất.
  • AREF: Chân 32 là chân tham chiếu tương tự chủ yếu được sử dụng cho bộ chuyển đổi A / D .
  • AVCC: Chân 30 là AVCC là chân điện áp cung cấp cho PORTA và ADC. Nó được kết nối với VCC thông qua bộ lọc thông thấp khi có ADC. Tuy nhiên, trong trường hợp không có ADC, AVCC được kết nối bên ngoài với VCC. 
  • Chân 12 & 13: Một bộ dao động tinh thể được kết nối với các chân này. Atmega16 hoạt động ở tần số bên trong 1MHZ; bộ dao động được thêm vào để tạo ra xung clock và tần số cao.

c.Thông số kỹ thuật At89s52 (Dip)

DatasheetsAt89s52
Standard Package27
CategoryIntegrated Circuits (ICs)
FamilyEmbedded – Atmel
SeriesAt89s
PackagingTube
Core Processor8051
Core Size8-Bit
Speed33MHz
ConnectivitySPI, UART / USART, USB
PeripheralsBrown-out Detec t/ Reset, HLVD, POR, PWM, WDT
Number of I /O32
Program Memory Size8KB
Program Memory TypeFLASH
EEPROM SizeNO
RAM Size256×8 Byte
Voltage – Supply (Vcc/Vdd)4.2 V ~ 5.5 V
Data ConvertersNO
Oscillator TypeInternal
Operating Temperature-40°C ~ 85°C
Package / Case40-SOIC (0.295″, 7.50mm Width)
Other NamesAt89s52

d. Power

  • 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
  • GND: Là chân mang điện cực âm trên board.
  • IOREF: Điệp áp hoạt động của vi điều khiển trên AVR và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.

e.Bộ nhớ

  • 8 KByte bộ nhớ chỉ đọc có thể xóa và lập trình nhanh (EPROM), 
  • 8 KByte bộ nhớ có thể lập trình nhanh, có khả năng tới 1000 chu kỳ ghi/xoá
  • 128 Byte RAM
  • 64 KB vùng nhớ mã ngoài
  • 64 KB vùng nhớ dữ liệu ngoại.

f. Chức năng nội bật

  • Là bộ vi điều khiển công nghệ CMOS hiệu suất cao tích hợp công nghệ Flash
  • Hoạt động ở dải điện áp rộng 4 – 5.5V, vì vậy nó là một IC công suất thấp.
  • Thiết bị hỗ trợ lập trình bên trong ở cả chế độ page và byte của bộ nhớ Flash.
  • Tần số hoạt động lên đến 33MHz nhưng có thể thay đổi để tiết kiệm năng lượng.
  • Module có thời gian lập trình nhanh với 10.000 chu kỳ đọc / ghi.
  • Bộ nhớ RAM 256 × 8 bit.
  • Giao tiếp nối tiếp thông qua module UART song công.
  • Nó có một chân reset, ba bộ định thời 16 bit và tám bộ ngắt.
  • AT89S52 có hai chế độ nguồn. Đầu tiên là chế độ nhàn rỗi, trong đó thiết bị xử lý dừng hoạt động trong khi ngoại vi vẫn tiếp tục hoạt động. Thứ hai là chế độ tắt nguồn sẽ tạm dừng bộ dao động và các chức năng khác và lưu nội dung RAM.
  • Bộ đếm thời gian Watchdog để hoạt động khởi động thiết bị từ chế độ ngủ và có thể được kích hoạt hoặc hủy kích hoạt thông qua lập trình

1.2 Cảm biến cảm biến gia tốc L3G4200 giao tiếp At89s52

a. Giới thiệu L3G4200 giao tiếp At89s52

Cảm biến Gyro 3 trục L3G4200D được sử dụng để đo góc quay của vật thể gắn cảm biến theo ba trục x, y, z, cảm biến có độ phân giải rất cao (16 bit) có để đo ở tốc độ 2000 độ/giây (dps) ổn định mà không bị ảnh hưởng bởi nhiệt độ hơn nhiều loại cảm biến có sẵn trên thị trường hiện nay. Cảm biến Gyro 3 trục L3G4200D có thể giao tiếp qua giao tiếp I2C hoặc SPI, nếu xử dụng giao tiếp I2C các bạn chỉ cần hàn 1 số jumper để chọn địa chỉ trên board, cảm biến còn tích hợp thêm 32 thanh ghi buffer FIFO giúp bạn có thể truy xuất dữ liệu nhanh và thuận tiện hơn làm giảm độ xử lý của Vi điều khiển. Cảm biến Gyro L3G4200D là cảm biến con quay hồi chuyển 3 trục dùng để đo gia tốc gốc, cảm biến có khả năng thay đổi tốc độ ở các mức 250/ 500/ 2000 dps. Cảm biến L3G4200D sẽ đo được vật thể quay được góc bao nhiêu độ quanh 3 trục cố định của nó, khoảng đo có thể được tùy chỉnh tùy theo nhu cầu sử dụng. cam-bien-gia-toc-L3G4200-giao-tiep-arduino-hien-thi-lcd1602

b. Thông số kỹ thuật L3G4200 giao tiếp At89s52

  • Nguồn sử dụng: 3~5VDC
  • Điện áp giao tiếp: 3~5VDC
  • Giao tiếp: I2C hoặc SPI
  • Đo 3 trục gia tốc góc.
  • Có thể điều chỉnh độ phân giải (2
  • Tích hợp chế độ FIFO
  • Phạm vi đo là ± 2 g, ± 4 g và ± 8 g
  • Độ phân giải trong phạm vi ± 2 g là 1 mg / LSB
  • Điều chỉnh tốc độ đo: 250, 500, 2000 dps.
  • Đo rất nhạy và ổn định.
  • Kích thước: 24 x 23 x 2 (mm).

c. Kết nối L3G4200 giao tiếp At89s52

  • VCC, GND: Cấp nguồn cho cảm biến hoạt động.
  • SCL/SCK: Nối với chân SCL của vi điều khiển nếu dùng giao tiếp I2C, nối với chân SCK (xung clock SPI, chân 13 trên Arduino Uno) nếu dùng giao tiếp SPI.
  • SDA/MOSI: Nối chân SDA của vi điều khiển nếu dùng giao tiếp I2C, nối chân MOSI (chân 11 trên Arduino Uno) nếu dùng SPI.
  • SDO: Nối với chân MISO (chân 12 trên Arduino Uno) nếu dùng giao tiếp SPI.
  • CS: Chân dùng với giao thức SPI, mặc định được kéo lên 3.3V, kéo xuống mức LOW để thực hiện giao tiếp qua SPI.
  • DR: Chân trạng thái dữ liệu. Mức HIGH cho biết dữ liệu đã sẵn sàng, có thể đọc cảm biến. Chân này có thể cài đặt FIFO interrupt.
  • INT: Programable interrupt.
 

1.3 LCD1602 cho cảm biến gia tốc L3G4200 giao tiếp At89s52

a. Giới thiệu

Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án.
lcd-16x02

b. Thông số kỹ thuật

  • Điện áp hoạt động là 5 V.
  • Kích thước: 80 x 36 x 12.5 mm
  • Chữ đen, nền xanh lá
  • Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
  • Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
  • Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
  • Có thể được điều khiển với 6 dây tín hiệu
  • Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.

c. Sơ đồ chân LCD

Số chânKý hiệu chânMô tả chân
1VssCấp điện 0v
2VccCấp điện 5v
3V0Chỉnh độ tương phản
4RSLựa chọn thanh ghi địa chỉ hay dữ liệu
5RWLựa chọn thanh ghi Đọc hay Viết
6ENCho phép xuất dữ liệu
7D0Đường truyền dữ liệu 0
8D1Đường truyền dữ liệu 1
9D2Đường truyền dữ liệu 2
10D3Đường truyền dữ liệu 3
11D4Đường truyền dữ liệu 4
12D5Đường truyền dữ liệu 5
13D6Đường truyền dữ liệu 6
14D7Đường truyền dữ liệu 7
15AChân dương đèn màn hình
16KChân âm đèn màn hình
Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:
  • Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
  • Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
  • Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.

d. Địa chỉ ba vùng nhớ 

  • Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
  • Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
  • Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
  • Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.

e. Các lệnh điều khiển của LCD

hinh-lcd1602-bang-gia-tri-LM35 giao tiếp Atmega
  • Lệnh thiết lập chức năng giao tiếp Function set:
    • Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
    • Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
    • Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
    • Các bit cao còn lại là hằng số không đổi.
  • Lệnh xoá màn hình “Clear Display: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.

  • Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
  • Lệnh thiết lập lối vào “Entry mode set: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
    • Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
    • Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
  • Lệnh điều khiển con trỏ hiển thị “Display Control

    • Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
    • Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
    • Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
    • Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
  • Lệnh di chuyển con trỏ “Cursor /Display Shift: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển 
    • Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
    • Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
    • Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
  • Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.

f. Bảng mã ASCII sử dụng cho LCD

bảng mã ascii hiển thị ký tự cho lcd1602
 

g. Bảng địa chỉ cho LCD

hinh-lcd1602-dia-chi-LM35 giao tiếp Atmega

2. Hướng dẫn đồ án cảm biến gia tốc L3G4200 giao tiếp At89s52 hiển thị LCD1602

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng

cam-bien-gia-toc-L3G4200-giao-tiep-arduino-hien-thi-lcd1602-1

Phần mềm

//This code is to use with L3G4200 triple axis gyro
//Modified by SurtrTech
//Refer to https://surtrtech.com/ for more information

#include <Wire.h>

#define CTRL_REG1 0x20
#define CTRL_REG2 0x21
#define CTRL_REG3 0x22
#define CTRL_REG4 0x23
#define CTRL_REG5 0x24

int L3G4200D_Address = 105; //I2C address of the L3G4200D

int x;
int y;
int z;

void setup(){

Wire.begin();
 Serial.begin(9600);

Serial.println("starting up L3G4200D");
 setupL3G4200D(2000); // Configure L3G4200 - 250, 500 or 2000 deg/sec

delay(1500); //wait for the sensor to be ready 
}

void loop(){
 getGyroValues(); // This will update x, y, and z with new values

Serial.print("X:");
 Serial.print(x); //Here you can do some operations befor you use that value
 //For example set it on a surface and substract or add numbers to get 0,0,0 if you want that position to be your reference
 Serial.print(" Y:");
 Serial.print(y);

Serial.print(" Z:");
 Serial.println(z);

delay(100); //Just here to slow down the serial to make it more readable
}

void getGyroValues(){

byte xMSB = readRegister(L3G4200D_Address, 0x29);
 byte xLSB = readRegister(L3G4200D_Address, 0x28);
 x = ((xMSB << 8) | xLSB);

byte yMSB = readRegister(L3G4200D_Address, 0x2B);
 byte yLSB = readRegister(L3G4200D_Address, 0x2A);
 y = ((yMSB << 8) | yLSB);

byte zMSB = readRegister(L3G4200D_Address, 0x2D);
 byte zLSB = readRegister(L3G4200D_Address, 0x2C);
 z = ((zMSB << 8) | zLSB);
}

int setupL3G4200D(int scale){
 //From Jim Lindblom of Sparkfun's code

// Enable x, y, z and turn off power down:
 writeRegister(L3G4200D_Address, CTRL_REG1, 0b00001111);

// If you'd like to adjust/use the HPF, you can edit the line below to configure CTRL_REG2:
 writeRegister(L3G4200D_Address, CTRL_REG2, 0b00000000);

// Configure CTRL_REG3 to generate data ready interrupt on INT2
 // No interrupts used on INT1, if you'd like to configure INT1
 // or INT2 otherwise, consult the datasheet:
 writeRegister(L3G4200D_Address, CTRL_REG3, 0b00001000);

// CTRL_REG4 controls the full-scale range, among other things:

if(scale == 250){
 writeRegister(L3G4200D_Address, CTRL_REG4, 0b00000000);
 }else if(scale == 500){
 writeRegister(L3G4200D_Address, CTRL_REG4, 0b00010000);
 }else{
 writeRegister(L3G4200D_Address, CTRL_REG4, 0b00110000);
 }

// CTRL_REG5 controls high-pass filtering of outputs, use it
 // if you'd like:
 writeRegister(L3G4200D_Address, CTRL_REG5, 0b00000000);
}

void writeRegister(int deviceAddress, byte address, byte val) {
 Wire.beginTransmission(deviceAddress); // start transmission to device 
 Wire.write(address); // send register address
 Wire.write(val); // send value to write
 Wire.endTransmission(); // end transmission
}

int readRegister(int deviceAddress, byte address){

int v;
 Wire.beginTransmission(deviceAddress);
 Wire.write(address); // register to read
 Wire.endTransmission();

Wire.requestFrom(deviceAddress, 1); // read a byte

while(!Wire.available()) {
 // waiting
 }

v = Wire.read();
 return v;
}

3. Hoạt động của mạch cảm biến gia tốc L3G4200 giao tiếp At89s52

Khi cấp điện hệ thống hoạt động, vi điều khiển đưa tín hiệu ban đầu cho lcd1602 hiển thị thông tin người dùng, lúc này vi điều khiển chờ tín hiệu được gửi vào từ cảm biến gia tốc L3G4200 giao tiếp At89s52 gửi vào. Khi nhận được tín hiệu vi điều khiển xử lý và gửi giá trị tọa độ trục X, Y, Z ra ngoài màn hình LCD1602 để hiển thị giá trị theo yêu cầu đã được lập trình.

4. Cụ thể hoạt động của mạch cảm biến gia tốc L3G4200 giao tiếp At89s52

Ngoài ra còn nhiều Phần và các môn khác

Đồ án điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 1 Mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 2 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Vi xử lý, Lập trình vi điều khiển Pic – 8051 – Avr – Phần 4 Tổng hợp File ĐỒ ÁN Điện tử cơ bản Tổng hợp File ĐỒ ÁN Viễn thông Tổng hợp File ĐỒ ÁN PLC Tổng hợp File ĐỒ ÁN Cung cấp điện

Chúc các bạn thành công…!!!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *