Loadcell giao tiếp At89s52, Cảm biến khối lượng + HX711 + LCD1602

cam-bien-loadcell-hx711-giao-tiep-8051-hien-thi-lcd

Loadcell giao tiếp At89s52 là dùng Cảm biến Loadcell là thiết bị cảm biến dùng để chuyển đổi lực hoặc trọng lượng thành tín hiệu điện. Khái niệm“strain gage”: cấu trúc có thể biến dạng đàn hồi khi chịu tác động của lực tạo ra một tín hiệu điện tỷ lệ với sự biến dạng này. Mỗi cảm biến Loadcell(cảm biến tải) một đầu ra độc lập, thường 1 đến 3 mV/V. Đầu ra kết hợp được tổng hợp dựa trên kết quả của đầu ra từng cảm biến tải – load cell. Các thiết bị đo lường hoặc bộ hiển thị khuyếch đại tín hiệu điện đưa về, qua chuyển đổi ADC, vi xử lý với phần mềm tích hợp sẵn thực hiện tính toán chỉnh định và đưa kết quả đọc được lên màn hình.

Đa phần các thiết bị hay bộ hiển thị hiện đại đều cho phép giao tiếp với các thiết bị ngoài khác như máy tính hoặc máy in. Những load cell này dựa trên nguyên lý cầu điện trở cân bằng {Wheatstone} gọi là cảm biến tải cầu điện trở. Cảm biến Loadcell 1Kg, 5Kg, 10Kg, 20Kg sử dụng để đo khối lượng của vật thể tối đa, cảm biến bằng kim loại với thiết kế rất dễ lắp đặt, phù hợp với các ứng dụng cân điện tử, cảm biến khối lượng,…, lưu ý để sử dụng với Vi điều khiển cần mua thêm Mạch chuyển đổi ADC HX711 chuyên dụng dành cho Loadcell.  

 

Liên hệ làm Đồ án và Mạch điện tử

 

Table of Contents

1. Linh kiện cần thiết làm mạch đọc cảm biến khối lượng Loadcell giao tiếp At89s52 qua hx711

1.1 Vi điều khiển 8051 trong mạch đọc cảm biến khối lượng Loadcell giao tiếp At89s52 qua hx711

a. Giới thiệu

At89s52 là một chíp vi điều khiển được sản xuất bời hãng Atmel thuộc họ 8051. At89s52 là một bộ vi điều khiển 8 bit dựa trên kiến trúc RISC bộ nhớ chương trình 8KB ISP flash có thể ghi xóa hàng nghìn lần, một bộ nhớ RAM vô cùng lớn trong thế giới vi xử lý 8 bit (256x8KB SRAM) Với 32 chân có thể sử dụng cho các kết nối vào hoặc ra i/O, 32 thanh ghi, 3 bộ timer/counter có thể lập trình, có các gắt nội và ngoại (2 lệnh trên một vector ngắt), giao thức truyền thông nối tiếp USART, SPI. Khả năng lập trình được watchdog timer, hoạt động với 5 chế độ nguồn. review-do-an-8051-at89s52các ứng dụng của vi điều khiển

b. Chức năng của At89s52:

 

Số chânTên chânĐặc điểm
32-39Port 08 chân Địa chỉ và Dữ liệu / GPIO
1-8Port 18 chân GPIO 
21-28Port 28 chân GPIO
10-17Port 38 chân GPIO
9RSTChân Reset
18XTAL2Chân đầu ra của bộ tạo dao động bên ngoài
19XTAL1Chân đầu vào bộ tạo dao động bên ngoài
20GNDChân nối đất
40VCCChân cấp điện
31EA / VPPKích hoạt truy xuất bên ngoài / chân cấp nguồn kích hoạt Flash
30ALE / PROGChân chốt địa chỉ / Chân lập trình flash
29PSENChân cho phép lưu chương trình
Chân Port 0

Tất cả các cổng của AT89S52 là 8-bit có nghĩa là mỗi port có 8 chân đa chức năng. Các chân đầu vào / đầu ra này có thể được cấu hình cho các chức năng khác bằng cấu hình cách các thanh ghi cấu hình.  Nếu chúng ở trạng thái mức thấp, chúng hoạt động như các chân đầu vào trở kháng cao hai chiều. Nhưng nếu chúng được kéo lên mức cao, chúng được sử dụng làm chân đầu ra digital. Các chân Port0 cũng được sử dụng để cập nhật các byte thấp trong code đến bộ nhớ chương trình bên trong của vi điều khiển AT89S52 và cũng được sử dụng để xác nhận code đã được cập nhật. Khi sử dụng các chân này để lập trình, chúng ta cần kết nối các chân này với các điện trở kéo lên bên ngoài.

Chân Port 1

Tương tự như port 0, Port1 cũng có các chân dữ liệu 2 chiều 8 bit với các điện trở kéo lên bên trong. Một số chân GPIO này được sử dụng giao tiếp lập trình hệ thống trong mạch và một số được sử dụng làm chức năng thay thế cho ba chân bộ định thời / bộ đếm 16 bit.

Số chânChức năng
P1.0T2
P1.1T2EX
P1.5MOSI
P1.6MISO
P1.7SCK
Chân Port 2

Giống như Port 1, Port2 cũng có các chân dữ liệu 2 chiều 8 bit với các điện trở kéo lên bên trong. Một số chân GPIO này được sử dụng để giao tiếp lập trình hệ thống trong mạch và một số chân được sử dụng làm chức năng thay thế cho ba chân Bộ định thời / Bộ đếm 16 bit. Các chân Port2 cũng được sử dụng để cập nhật các byte cao trong code lên bộ nhớ chương trình bên trong của vi điều khiển AT89S52 và cũng được sử dụng để xác nhận code đã được cập nhật. Khi sử dụng các chân này để lập trình, chúng ta cần kết nối các chân này với các điện trở kéo lên bên ngoài.

Chân port 3 Port 3 cũng là một cổng 8-bit và có 8 chân GPIO. Ngoài chức năng nhập / xuất, các chân này còn có một số tính năng đặc biệt.  Cổng 3 cũng được sử dụng để truyền dữ liệu nối tiếp UART, ngắt ngoài và thực hiện các thao tác đọc / ghi bộ nhớ dữ liệu bên ngoài.

Số chânChức năng
P3.0RXD
P3.1TXD
P3.2INT0
P3.3INT1
P3.4T0
P3.5T1
P3.6WR
P3.7RD

Tất cả các chân này là chân dữ liệu hai chiều và tương thích với chuẩn TTL. Chúng có thể là nguồn dòng sink hay source và tất cả đều có điện trở kéo lên bên trong để xác định đúng trạng thái.

Các chức năng khác

  • Reset: Chân 9 là chân reset mức thấp đang hoạt động. Xung mức thấp dài hơn độ dài xung tối thiểu sẽ tạo ra reset. Các xung ngắn không có khả năng tạo ra reset.
  • VCC: Chân 10 là chân cấp nguồn cho bộ điều khiển này. Nguồn điện của cần phải có 5 V để đặt bộ điều khiển này trong điều kiện đang chạy. 
  • GND: Chân 11 là chân nối đất.
  • AREF: Chân 32 là chân tham chiếu tương tự chủ yếu được sử dụng cho bộ chuyển đổi A / D .
  • AVCC: Chân 30 là AVCC là chân điện áp cung cấp cho PORTA và ADC. Nó được kết nối với VCC thông qua bộ lọc thông thấp khi có ADC. Tuy nhiên, trong trường hợp không có ADC, AVCC được kết nối bên ngoài với VCC. 
  • Chân 12 & 13: Một bộ dao động tinh thể được kết nối với các chân này. Atmega16 hoạt động ở tần số bên trong 1MHZ; bộ dao động được thêm vào để tạo ra xung clock và tần số cao.

c.Thông số kỹ thuật At89s52 (Dip)

DatasheetsAt89s52
Standard Package27
CategoryIntegrated Circuits (ICs)
FamilyEmbedded – Atmel
SeriesAt89s
PackagingTube
Core Processor8051
Core Size8-Bit
Speed33MHz
ConnectivitySPI, UART / USART, USB
PeripheralsBrown-out Detec t/ Reset, HLVD, POR, PWM, WDT
Number of I /O32
Program Memory Size8KB
Program Memory TypeFLASH
EEPROM SizeNO
RAM Size256×8 Byte
Voltage – Supply (Vcc/Vdd)4.2 V ~ 5.5 V
Data ConvertersNO
Oscillator TypeInternal
Operating Temperature-40°C ~ 85°C
Package / Case40-SOIC (0.295″, 7.50mm Width)
Other NamesAt89s52

d. Power

  • 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
  • GND: Là chân mang điện cực âm trên board.
  • IOREF: Điệp áp hoạt động của vi điều khiển trên AVR và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.

e.Bộ nhớ

  • 8 KByte bộ nhớ chỉ đọc có thể xóa và lập trình nhanh (EPROM), 
  • 8 KByte bộ nhớ có thể lập trình nhanh, có khả năng tới 1000 chu kỳ ghi/xoá
  • 128 Byte RAM
  • 64 KB vùng nhớ mã ngoài
  • 64 KB vùng nhớ dữ liệu ngoại.

f. Chức năng nội bật

  • Là bộ vi điều khiển công nghệ CMOS hiệu suất cao tích hợp công nghệ Flash
  • Hoạt động ở dải điện áp rộng 4 – 5.5V, vì vậy nó là một IC công suất thấp.
  • Thiết bị hỗ trợ lập trình bên trong ở cả chế độ page và byte của bộ nhớ Flash.
  • Tần số hoạt động lên đến 33MHz nhưng có thể thay đổi để tiết kiệm năng lượng.
  • Module có thời gian lập trình nhanh với 10.000 chu kỳ đọc / ghi.
  • Bộ nhớ RAM 256 × 8 bit.
  • Giao tiếp nối tiếp thông qua module UART song công.
  • Nó có một chân reset, ba bộ định thời 16 bit và tám bộ ngắt.
  • AT89S52 có hai chế độ nguồn. Đầu tiên là chế độ nhàn rỗi, trong đó thiết bị xử lý dừng hoạt động trong khi ngoại vi vẫn tiếp tục hoạt động. Thứ hai là chế độ tắt nguồn sẽ tạm dừng bộ dao động và các chức năng khác và lưu nội dung RAM.
  • Bộ đếm thời gian Watchdog để hoạt động khởi động thiết bị từ chế độ ngủ và có thể được kích hoạt hoặc hủy kích hoạt thông qua lập trình

1.2 Cảm biến khối lượng Loadcell giao tiếp At89s52 qua hx711

a. Giới thiệu

  • Cảm biến Load cell là thiết bị cảm biến dùng để chuyển đổi lực hoặc trọng lượng thành tín hiệu điện. Khái niệm“strain gage”: cấu trúc có thể biến dạng đàn hồi khi chịu tác động của lực tạo ra một tín hiệu điện tỷ lệ với sự biến dạng này.
  • Mỗi cảm biến Load cell(cảm biến tải) một đầu ra độc lập, thường 1 đến 3 mV/V. Đầu ra kết hợp được tổng hợp dựa trên kết quả của đầu ra từng cảm biến tải – load cell. Các thiết bị đo lường hoặc bộ hiển thị khuyếch đại tín hiệu điện đưa về, qua chuyển đổi ADC, vi xử lý với phần mềm tích hợp sẵn thực hiện tính toán chỉnh định và đưa kết quả đọc được lên màn hình. Đa phần các thiết bị hay bộ hiển thị hiện đại đều cho phép giao tiếp với các thiết bị ngoài khác như máy tính hoặc máy in. Những load cell này dựa trên nguyên lý cầu điện trở cân bằng {Wheatstone} gọi là cảm biến tải cầu điện trở.
  • Cảm biến Loadcell 1Kg, 5Kg, 10Kg, 20Kg sử dụng để đo khối lượng của vật thể tối đa, cảm biến bằng kim loại với thiết kế rất dễ lắp đặt, phù hợp với các ứng dụng cân điện tử, cảm biến khối lượng,…, lưu ý để sử dụng với Vi điều khiển cần mua thêm Mạch chuyển đổi ADC HX711 chuyên dụng dành cho Loadcell.

các loại cảm biến loadcell trên thị trường

b. Thông số kỹ thuật khối lượng Loadcell giao tiếp At89s52

  • Model : YZC – 133
  • Tải trọng : 1Kg, 5Kg, 10Kg, 20Kg
  • Rated Output ( mV/V) : 1.0 +- 0.15
  • Độ lệch tuyến tính (%) : 0.05
  • Creep (5min) % : 0.1
  • Ảnh hưởng nhiệt độ tới độ nhạy %RO/ độ C : 0.003
  • Ảnh hưởng nhiệt độ tới điểm không %RO/ độ C : 0.02
  • Độ cân bằng điểm không %RO : +-0.1
  • Trở kháng đầu vào (Ω ) : 1066 +- 20
  • Trở kháng ngõ ra (Ω ) : 1000 +- 20
  • Trở kháng cách li (MΩ) 50V : 2000
  • Điện áp hoạt động : 5V
  • Nhiệt độ hoạt động : -20 ~ 65 độ C
  • Safe Overload %RO : 120
  • Ultimate overload %RO :150
  • Chất liệu cảm biến  : Nhôm
  • Độ dài dây : 180mm

c. Chức năng các dây khối lượng Loadcell

  • Dây đỏ : Ngõ vào ( + )
  • Dây đen : Ngõ vào ( – )
  • Dây xanh Lá : Ngõ ra ( + )
  • Dây trắng : Ngõ ra ( – )

d. Cấu tạo cảm biến khối lượng Loadcell giao tiếp At89s52 qua hx711

Loadcell được cấu tạo bởi hai thành phần là: Strain gage và Load. Một loadcell thường bao gồm các strain gage được dán vào bề mặt của thân loadcell. Thân loadcell là một khối kim loại đàn hồi và tùy theo từng loại loadcell và mục đích sử dụng loadcell, thân loadcell được thiết kế nhiều hình dạng khác nhau, chế tạo bằng nhiều vật liệu khác nhau (nhôm hợp kim, thép không gỉ…)

  • Strain gage là một điện trở đặc biệt, có điện trở thay đổi khi bị nén hay kéo dãn và được nuôi bằng một nguồn ổn định.
  • Load là một thanh kim loại có tính đàn hồi.

R = Điện trở strain gauge (Ohm) L = Chiều dài của sợi kim loại strain gauge (m) A  =  Tiết diện của sợi kim loại strain gauge (m2) r=  Điện trở suất vật liệu của sợi kim loại strain gauge Khi dây kim loại bị lực tác động sẽ thay đổi điện trở Khi dây bị lực nén, chiều dài strain gauge giảm, điện trở sẽ giảm xuống. Khi dây bi kéo dãn, chiều dài strain gauge tăng, điện trở sẽ tăng lên Điện trở thay đổi tỷ lệ với lực tác động.

e. Nguyên lý hoạt động cảm biến khối lượng Loadcell

Tại trạng thái cân bằng (trạng thái không tải), điện áp tín hiệu ra là số không hoặc gần bằng không khi bốn điện trở được gắn phù hợp về giá trị. Khi có tải trọng hoặc lực tác động lên thân loadcell làm cho thân loadcell bị biến dạng (giãn hoặc nén), dẫn đến sự thay đổi về chiều dài và tiết diện của các sợi kim loại của điện trở strain gage -> thay đổi giá trị điện trở -> thay đổi điện áp đầu ra.

f. Ứng dụng của cảm biến khối lượng Loadcell

  • Làm cân điện tử
  • Làm phân loại sản phẩm theo cân nặng sử dụng cho hệ thống cân tĩnh hoặc cân động
  • Ứng dụng đo độ an toàn trong cầu đường
  • Hệ thống chiếc rót nước vào chai

1.3 Module chuyển đổi ADC 24bit loadcell HX-711 khối lượng Loadcell giao tiếp At89s52

a. Giới thiệu

  • Mạch chuyển đổi ADC 24bit Loadcell HX711 được sử dụng để đọc giá trị điện trở thay đổi từ cảm biến Loadcell (thường rất nhỏ không thể đọc trực tiếp bằng VĐK) với độ phân giải ADC 24bit và chuyển sang giao tiếp 2 dây (Clock và Data) để gửi dữ liệu về Vi điều khiển, thích hợp để sử dụng với Loadcell trong các ứng dụng đo cân nặng.

module hx711 đọc cảm biến loadcell

b. Thông số kỹ thuật

  • Điện áp hoạt động : 2.7~5VDC
  • Dòng tiêu thụ : < 1.5 mA
  • Tốc độ lấy mẫu : 10 – 80 SPS ( tùy chỉnh )
  • Độ phân giải : 24 bit ADC
  • Độ phân giải điện áp : 40mV
  • Kích thước : 38 x 21 x 10 mm

1.4 LCD 16×2 cho mạch đọc khối lượng Loadcell giao tiếp At89s52 qua hx711

a. Giới thiệu

Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án.
lcd-16x02

b. Thông số kỹ thuật

  • Điện áp hoạt động là 5 V.
  • Kích thước: 80 x 36 x 12.5 mm
  • Chữ đen, nền xanh lá
  • Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
  • Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
  • Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
  • Có thể được điều khiển với 6 dây tín hiệu
  • Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.

c. Sơ đồ chân LCD 16×2

Số chânKý hiệu chânMô tả chân
1VssCấp điện 0v
2VccCấp điện 5v
3V0Chỉnh độ tương phản
4RSLựa chọn thanh ghi địa chỉ hay dữ liệu
5RWLựa chọn thanh ghi Đọc hay Viết
6ENCho phép xuất dữ liệu
7D0Đường truyền dữ liệu 0
8D1Đường truyền dữ liệu 1
9D2Đường truyền dữ liệu 2
10D3Đường truyền dữ liệu 3
11D4Đường truyền dữ liệu 4
12D5Đường truyền dữ liệu 5
13D6Đường truyền dữ liệu 6
14D7Đường truyền dữ liệu 7
15AChân dương đèn màn hình
16KChân âm đèn màn hình
Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:
  • Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
  • Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
  • Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.

d. Địa chỉ ba vùng nhớ 

  • Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
  • Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
  • Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
  • Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.

e. Các lệnh điều khiển của LCD

hinh-lcd1602-bang-gia-tri-Loadcell giao tiếp Arduino
  • Lệnh thiết lập chức năng giao tiếp Function set:
    • Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
    • Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
    • Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
    • Các bit cao còn lại là hằng số không đổi.
  • Lệnh xoá màn hình “Clear Display: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.

  • Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
  • Lệnh thiết lập lối vào “Entry mode set: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
    • Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
    • Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
  • Lệnh điều khiển con trỏ hiển thị “Display Control

    • Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
    • Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
    • Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
    • Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
  • Lệnh di chuyển con trỏ “Cursor /Display Shift: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển 
    • Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
    • Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
    • Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
  • Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
  • Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.

f. Bảng mã ASCII sử dụng cho LCD

bảng mã ascii hiển thị ký tự cho lcd1602-Loadcell giao tiếp Arduino

 

g. Bảng địa chỉ cho LCD

hinh-lcd1602-dia-chi-Loadcell giao tiếp Arduino  

2. Hướng dẫn đồ án cảm biến khối lượng Loadcell giao tiếp At89s52 qua hx711 hiển thị LCD1602

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng

cam-bien-loadcell-hx711-giao-tiep-arduino-hien-thi-lcd

Phần mềm

Thư viện HX711.h tải từ phần mềm Arduino

#include #include "HX711.h"

// HX711.DOUT – pin #A1
// HX711.PD_SCK – pin #A0

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

HX711 scale(A1, A0); // parameter “gain” is ommited; the default value 128 is used by the library

void setup() {
Serial.begin(38400);
lcd.begin(16, 2);
lcd.print(“weight Measurement”);
delay(1000);
lcd.clear();
lcd.print(“setting up”);
Serial.println(“Weight Measurement”);

Serial.println(“Before setting up the scale:”);
Serial.print(“read: \t\t”);
Serial.println(scale.read()); // print a raw reading from the ADC

Serial.print(“read average: \t\t”);
Serial.println(scale.read_average(20)); // print the average of 20 readings from the ADC

Serial.print(“get value: \t\t”);
Serial.println(scale.get_value(5)); // print the average of 5 readings from the ADC minus the tare weight (not set yet)

Serial.print(“get units: \t\t”);
Serial.println(scale.get_units(5), 1); // print the average of 5 readings from the ADC minus tare weight (not set) divided
// by the SCALE parameter (not set yet)

scale.set_scale(2280.f); // this value is obtained by calibrating the scale with known weights; see the README for details
scale.tare(); // reset the scale to 0

Serial.println(“After setting up the scale:”);

Serial.print(“read: \t\t”);
Serial.println(scale.read()); // print a raw reading from the ADC

Serial.print(“read average: \t\t”);
Serial.println(scale.read_average(20)); // print the average of 20 readings from the ADC

Serial.print(“get value: \t\t”);
Serial.println(scale.get_value(5)); // print the average of 5 readings from the ADC minus the tare weight, set with tare()

Serial.print(“get units: \t\t”);
Serial.println(scale.get_units(5), 1); // print the average of 5 readings from the ADC minus tare weight, divided
// by the SCALE parameter set with set_scale

Serial.println(“Readings:”);
}

void loop() {
Serial.print(“one reading:\t”);
Serial.print(scale.get_units(), 1);
Serial.print(“\t| average:\t”);
Serial.println(scale.get_units(10), 1);
lcd.clear();
lcd.setCursor(1,1);
lcd.print(scale.get_units(10), 1);
scale.power_down(); // put the ADC in sleep mode
delay(5000);
scale.power_up();
}

3. Hoạt động của mạch đọc cảm biến khối lượng Loadcell

Khi cấp điện hệ thống hoạt động, vi điều khiển hiển thị thông tin ban đầu. Lúc này vi điều khiển chờ tín hiệu từ cảm biến loadcell trả về tín hiệu cho module chuyển đổi 24bit HX711 sau đó chuyển vào vi điều khiển, Khi nhận tín hiệu vi điều khiển tính toán, xử lý dữ liệu và xuất tín hiệu ra màn hình LCD1602 hiển thị thông tin có người hoặc không có người theo yêu cầu của người lập trình.

4. Cụ thể hoạt động của mạch đọc cảm biến khối lượng Loadcell giao tiếp At89s52 qua hx711:

Chúc các bạn thành công…!!!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *