GP2Y1010AU0F giao tiếp Nano, Cảm biến bụi PM2.5 + Lcd1602 + Arduino

cam-bien-bui-pm2.5-GP2Y1010AU0F-giao-tiep-nano-arduino-hien-thi-lcd1602-1

GP2Y1010AU0F giao tiếp Nano là dùng Cảm biến bụi GP2Y1010AU0F được sản xuất bởi hãng SHARP, được sử dụng để nhận biết nồng độ bụi trong không khí, nguyên lý hoạt động dựa trên LED phát hồng ngoại tích hợp bên trong cảm biến bụi, khi có bụi vào thì sẽ bị khúc xạ, làm giảm đi cường độ tia hồng ngoại ==> điện áp thay đổi.  

 
Liên hệ làm Đồ án và Mạch điện tử

 

1. Linh kiện cần thiết làm mạch cảm biến bụi GP2Y1010AU0F giao tiếp Nano

1.1 Vi điều khiển Arduino trong mạch cảm biến bụi GP2Y1010AU0F giao tiếp Nano

a. Giới thiệu

Arduino Nano có chức năng tương tự như Arduino Duemilanove nhưng khác nhau về dạng mạch. Nano được tích hợp vi điều khiển ATmega328P, giống như Arduino UNO. Sự khác biệt chính giữa chúng là bảng UNO có dạng PDIP (Plastic Dual-In-line Package) với 30 chân còn Nano có sẵn trong TQFP (plastic quad flat pack) với 32 chân. Trong khi UNO có 6 cổng ADC thì Nano có 8 cổng ADC. Bảng Nano không có giắc nguồn DC như các bo mạch Arduino khác, mà thay vào đó có cổng mini-USB. 

Cổng này được sử dụng cho cả việc lập trình và bộ giám sát nối tiếp. Tính năng hấp dẫn của arduino Nano là nó sẽ chọn công xuất lớn nhất với hiệu điện thế của nó. Arduino Nano là phiên bản nhỏ gọn của Arduino Uno R3 sử dụng MCU ATmega328P-AU dán, vì cùng MCU nên mọi tính năng hay chương trình chạy trên Arduino Uno đều có thể sử dụng trên Arduino Nano, một ưu điểm của Arduino Nano là vì sử dụng phiên bản IC dán nên sẽ có thêm 2 chân Analog A6, A7 so với Arduino Uno. ban-phim-cam-ung1-cham-ttp223-giao-tiep-arduino-hien-thi-lcd1602-5

Chức năng khác

Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, … các ứng dụng của vi điều khiển

b. Chức năng của Arduino Nano:

Chân ICSP

Tên pin Arduino Nano ICSPKiểuChức năng

MISO

Đầu vào hoặc đầu ra

Master In Slave Out

Vcc

Đầu ra

Cấp nguồn

SCK

Đầu ra

Tạo xung cho

MOSI

Đầu ra hoặc đầu vào

Master Out Slave In

RST

Đầu vào

Đặt lại, Hoạt động ở mức thấp

GND

Nguồn

Chân nối dất

Chức năng cụ thể

  • Các chân: 1, 2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 và 16 Như đã đề cập trước đó, Arduino Nano có 14 ngõ vào/ra digital. Các chân làm việc với điện áp tối đa là 5V. Mỗi chân có thể cung cấp hoặc nhận dòng điện 40mA và có điện trở kéo lên khoảng 20-50kΩ. Các chân có thể được sử dụng làm đầu vào hoặc đầu ra, sử dụng các hàm pinMode (), digitalWrite () và digitalRead ().
  • Ngoài các chức năng đầu vào và đầu ra số, các chân này cũng có một số chức năng bổ sung.
  • Chân 1, 2: Chân nối tiếp Hai chân nhận RX và truyền TX này được sử dụng để truyền dữ liệu nối tiếp TTL. Các chân RX và TX được kết nối với các chân tương ứng của chip nối tiếp USB tới TTL.
  • Chân 6, 8, 9, 12, 13 và 14: Chân PWM Mỗi chân số này cung cấp tín hiệu điều chế độ rộng xung 8 bit. Tín hiệu PWM có thể được tạo ra bằng cách sử dụng hàm analogWrite ().
  • Chân 5, 6: Ngắt Khi chúng ta cần cung cấp một ngắt ngoài cho bộ xử lý hoặc bộ điều khiển khác, chúng ta có thể sử dụng các chân này. Các chân này có thể được sử dụng để cho phép ngắt INT0 và INT1 tương ứng bằng cách sử dụng hàm attachInterrupt (). Các chân có thể được sử dụng để kích hoạt ba loại ngắt như ngắt trên giá trị thấp, tăng hoặc giảm mức ngắt và thay đổi giá trị ngắt.

 

Chức năng khác

  • Khi bạn không muốn dữ liệu được truyền đi không đồng bộ, bạn có thể sử dụng các chân ngoại vi nối tiếp này. Các chân này hỗ trợ giao tiếp đồng bộ với SCK. Mặc dù phần cứng có tính năng này nhưng phần mềm Arduino lại không có. Vì vậy, bạn phải sử dụng thư viện SPI để sử dụng tính năng này.
  • Chân 16: Led Khi bạn sử dụng chân 16, đèn led trên bo mạch sẽ sáng.
  • Chân 18, 19, 20, 21, 22, 23, 24, 25 và 26 : Ngõ vào/ra tương tự Như đã đề cập trước đó UNO có 6 chân đầu vào tương tự nhưng Arduino Nano có 8 đầu vào tương tự (19 đến 26), được đánh dấu A0 đến A7. Điều này có nghĩa là bạn có thể kết nối 8 kênh đầu vào tương tự để xử lý. Mỗi chân tương tự này có một ADC có độ phân giải 1024 bit (do đó nó sẽ cho giá trị 1024). Theo mặc định, các chân được đo từ mặt đất đến 5V. Nếu bạn muốn điện áp tham chiếu là 0V đến 3.3V, có thể nối với nguồn 3.3V cho chân AREF (pin thứ 18) bằng cách sử dụng chức năng analogReference (). Tương tự như các chân digital trong Nano, các chân analog cũng có một số chức năng khác.
  • Chân 23, 24 như A4 và A5: chuẩn giao tiếp I2C

Chức năng khác

  • Khi giao tiếp SPI cũng có những nhược điểm của nó như cần 4 chân và giới hạn trong một thiết bị. Đối với truyền thông đường dài, cần sử dụng giao thức I2C. I2C hỗ trợ chỉ với hai dây. Một cho xung (SCL) và một cho dữ liệu (SDA). Để sử dụng tính năng I2C này, chúng ta cần phải nhập một thư viện có tên là Thư viện Wire.
  • Chân 18: AREF : Điện áp tham chiếu cho đầu vào dùng cho việc chuyển đổi ADC.
  • Chân 28 : RESET: Đây là chân reset mạch khi chúng ta nhấn nút rên bo. Thường được sử dụng để được kết nối với thiết bị chuyển mạch để sử dụng làm nút reset.
  • Chân 13, 14, 15 và 16: Giao tiếp SPI

ban-phim-cam-ung1-cham-ttp223-giao-tiep-arduino-hien-thi-lcd1602-3

c.Thông số kỹ thuật Arduino Nano (Dip)

DatasheetsAtmega328
Standard Package27
CategoryIntegrated Circuits (ICs)
FamilyEmbedded – Atmel
SeriesAtmega
PackagingTube
Core ProcessorAVR
Core Size8-Bit
Speed16MHz
ConnectivityI²C, SPI, UART / USART, USB
PeripheralsBrown-out Detect/ Reset, HLVD, POR, PWM, WDT
Number of I /O14
Program Memory Size32KB
Program Memory TypeFLASH
EEPROM Size1KB
RAM Size2K
Voltage – Supply (Vcc/Vdd)4.2 V ~ 5.5 V
Data ConvertersA/D 6 x 10bit
Oscillator TypeInternal
Operating Temperature-40°C ~ 85°C
Package / Case28-SOIC (0.295″, 7.50mm Width)
Other NamesAtmega328

d. Power

  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • VIN: Chân này dùng để cấp nguồn ngoài (điện áp cấp từ 7-12VDC).
  • 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
  • 3V3: Điện áp ra 3.3V (dòng điện trên mỗi chân này tối đa là 50mA).
  • GND: Là chân mang điện cực âm trên board.
  • IOREF: Điệp áp hoạt động của vi điều khiển trên Arduino UNO và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.

e.Bộ nhớ

Vi điều khiển ATmega328:
  • 32 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
  • 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
  • 1 KB cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.

f. Các chân đầu vào và đầu ra

Trên Board Arduino Uno có 14 chân Digital được sử dụng để làm chân đầu vào và đầu ra và chúng sử dụng các hàm pinMode(), digitalWrite(), digitalRead(). Giá trị điện áp trên mỗi chân là 5V, dòng trên mỗi chân là 20mA và bên trong có điện trở kéo lên là 20-50 ohm. Dòng tối đa trên mỗi chân I/O không vượt quá 40mA để tránh trường hợp gây hỏng board mạch. Ngoài ra, một số chân Digital có chức năng đặt biệt:
  • Serial: 0 (RX) và 1 (TX): Được sử dụng để nhận dữ liệu (RX) và truyền dữ liệu (TX) TTL.
  • Ngắt ngoài: Chân 2 và 3.
  • PWM: 3, 5, 6, 9 và 11 Cung cấp đầu ra xung PWM với độ phân giải 8 bit bằng hàm analogWrite ().
  • SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Các chân này hỗ trợ giao tiếp SPI bằng thư viện SPI.
  • LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
  • TWI/I2C: A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.

1.2 Cảm biến bụi GP2Y1010AU0F giao tiếp Arduino

a. Giới thiệu Cảm biến bụi GP2Y1010AU0F

Cảm biến bụi GP2Y1010AU0F được sản xuất bởi hãng SHARP, được sử dụng để nhận biết nồng độ bụi trong không khí, nguyên lý hoạt động dựa trên LED phát hồng ngoại tích hợp bên trong cảm biến bụi, khi có bụi vào thì sẽ bị khúc xạ, làm giảm đi cường độ tia hồng ngoại ==> điện áp thay đổi. cam-bien-bui-pm2.5-GP2Y1010AU0F-giao-tiep-nano-arduino-hien-thi-lcd1602

b. Thông số kỹ thuật Cảm biến bụi GP2Y1010AU0F

  • Nguồn: 5VDC
  • Dòng tiêu thụ: 10mA
  • Ngõ ra: analog với tỉ lệ 0.5V ~ 0.1mg/m3
  • Nhiệt độ hoạt động: -40 ~ 85 độ C

c. Các chân tín hiệu Cảm biến bụi GP2Y1010AU0F

  •  1. V-Vcc         : chân cấp nguồn 3.3VDC
  • 2. LED-GND  : chân cấp nguồn âm 0VDC
  • 3. LED            : chân kích led cho phép đọc
  • 4. S-GND        : chân cấp nguồn 0V
  • 5. Vo                : Chân đọc Analog
  • 6. Vcc              : Chân cấp nguồn 3.3V

1.3 LCD1602 cho mạch cảm biến bụi GP2Y1010AU0F giao tiếp Nano

a. Giới thiệu

Màn hình Oled 1.3 inch giao tiếp I2C cho khả năng hiển thị đẹp, sang trọng, rõ nét vào ban ngày và khả năng tiết kiệm năng lượng tối đa với mức chi phí phù hợp, màn hình sử dụng giao tiếp I2C cho chất lượng đường truyền ổn định và rất dễ giao tiếp chỉ với 2 chân GPIO. Màn hình OLED SH1106 với kích thước 1.3 inch, cho khả năng hiển thị hình ảnh tốt với khung hình 128×64 pixel. Ngoài ra, màn hình còn tương thích với hầu hết các vi điều khiển hiện nay thông qua giao tiếp SPI. Màn hình sử dụng driver SH1106 cùng thiết kế nhỏ gọn sẽ giúp bạn phát triển các sản phẩm DIY hoặc các ứng dụng khác một cách nhanh chóng. màn hình oled 1.3in chuẩn i2c

Màn hình Oled chuẩn truyền I2C

màn hình oled chuẩn truyền SPI

Màn hình Oled chuẩn truyền SPI

b. Thông số kỹ thuật

  • Điện áp sử dụng: 2.2~5.5VDC
  • Công suất tiêu thụ: 0.04w
  • Góc hiển thị: lớn hơn 160 độ
  • Số điểm hiển thị: 128×64 điểm.
  • Độ rộng màn hình: 1.3 inch.
  • Màu hiển thị: Trắng / Xanh Dương.
  • Giao tiếp: I2C hoặc SPI tùy loại
  • Driver: SH1106
  • Kích thước 1.3 inch (128x64px)
  • Góc nhìn tối đa: 160°
  • Nhiệt độ làm việc: -30°V đến 80°C
  • Tương thích với hầu hết các board như: Arduino, ESP8266, ESP32, STM32,
Lưu ý khi dùng Oled 1.3in Hiện trên thị trường sẽ có: +  2 loại chính là 0.96in1.3in +  2 mã số là SH1106SH1306 +  2 chuẩn truyền SPII2C Vì thế việc lựa chọn đúng đối tượng để lập trình mới có thể hiển thị được thông tin mong muốn.

2. Hướng dẫn đồ án cảm biến bụi GP2Y1010AU0F giao tiếp Nano hiển thị LCD1602

Phần này chưa được chia sẻ.

LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.

Phần cứng

cam-bien-bui-pm2.5-GP2Y1010AU0F -giao-tiep-arduino-hien-thi-lcd1602

Phần mềm

#include <SPI.h>
#include <Adafruit_GFX.h>
#include <Adafruit_SSD1306.h>
 
#define SCREEN_WIDTH 128 // OLED display width, in pixels
#define SCREEN_HEIGHT 64 // OLED display height, in pixels
 
// Declaration for SSD1306 display connected using software SPI (default case):
#define OLED_MOSI   9
#define OLED_CLK   10
#define OLED_DC    11
#define OLED_CS    12
#define OLED_RESET 13
 
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT,
  OLED_MOSI, OLED_CLK, OLED_DC, OLED_RESET, OLED_CS);
 
int measurePin = A5;
int ledPower = 7;
  
float voMeasured = 0;
float calcVoltage = 0;
float dustDensity = 0;
  
void setup(){
  Serial.begin(9600);
  pinMode(ledPower,OUTPUT);
  display.begin(SSD1306_SWITCHCAPVCC);
  display.clearDisplay();
  display.display();
}
  
void loop(){
  digitalWrite(ledPower,LOW);
  delayMicroseconds(280);
 
  voMeasured = analogRead(measurePin);
 
  delayMicroseconds(40);
  digitalWrite(ledPower,HIGH);
  delayMicroseconds(9680);
 
  calcVoltage = voMeasured*(5.0/1024);
  dustDensity = 0.17*calcVoltage-0.1;
 
  if ( dustDensity < 0)
  {
    dustDensity = 0.00;
  }
  
  Serial.println("Raw Signal Value (0-1023):");
  Serial.println(voMeasured);
 
  Serial.println("Voltage:");
  Serial.println(calcVoltage);
 
  Serial.println("Dust Density:");
  Serial.println(dustDensity);
   
  display.setTextSize(1);
  display.setTextColor(WHITE);
  display.setCursor(85,22);
  display.println("Dust");
  display.setCursor(85,38);
  display.println("Density");
  display.setTextSize(3);
  display.setCursor(0,13);
  display.println(dustDensity);
  display.setCursor(6,43);
  display.setTextSize(2);
  display.println("ug/m3");
  display.display();
  display.clearDisplay();
  
  delay(1000);
}

3. Hoạt động của mạch cảm biến bụi GP2Y1010AU0F

Khi cấp điện hệ thống hoạt động, vi điều khiển hiển thị thông tin ban đầu. Lúc này vi điều khiển chờ tín hiệu từ cảm biến bụi GP2Y1010AU0F giao tiếp Nano trả về để đọc giá trị analog, Khi nhận tín hiệu vi điều khiển tính toán, xử lý dữ liệu và xuất tín hiệu giá trị bụi pm2.5 ra màn hình LCD1602 hiển thị thông tin có người hoặc không có người theo yêu cầu của người lập trình.

4. Cụ thể hoạt động của mạch cảm biến bụi GP2Y1010AU0F giao tiếp Nano các bạn xem video:

Chúc các bạn thành công…!!!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *