Table of Contents
1. Linh kiện cần thiết làm mạch đọc cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino
1.1 Vi điều khiển Arduino trong mạch đọc cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino
a. Giới thiệu
Arduino Uno R3 (Dip) có 14 chân digital dùng để đọc hoặc xuất tín hiệu. Chúng chỉ có 2 mức điện áp là 0V và 5V với dòng vào/ra tối đa trên mỗi chân là 40mA. Ở mỗi chân đều có các điện trở pull-up từ được cài đặt ngay trong vi điều khiển ATmega328 (mặc định thì các điện trở này không được kết nối).Các chức năng khác
Arduino Uno R3 là một bảng mạch vi điều khiển nguồn mở dựa trên vi điều khiển Microchip ATmega328 được phát triển bởi Arduino.cc. Bảng mạch được trang bị các bộ chân đầu vào/ đầu ra Digital và Analog có thể giao tiếp với các bảng mạch mở rộng khác nhau. Mạch Arduino Uno thích hợp cho những bạn mới tiếp cận và đam mê về điện tử, lập trình…Dựa trên nền tảng mở do Arduino.cc cung cấp các bạn dễ dàng xây dựng cho mình một dự án nhanh nhất ( lập trình Robot, xe tự hành, điều khiển bật tắt led…). Vi xử lý có rất nhiều loại bắt đầu từ 4 bit cho đến 32 bit, vi xử lý 4 bit hiện nay không còn nhưng vi xử lý 8 bit vẫn còn mặc dù đã có vi xử lý 64 bit. Lý do sự tồn tại của vi xử lý 8 bit là phù hợp với một số yêu cầu điều khiển trong công nghiệp. Các vi xử lý 32 bit, 64 bit thường sử dụng cho các máy tính vì khối lượng dữ liệu của máy tính rất lớn nên cần các vi xử lý càng mạnh càng tốt. Các hệ thống điều khiển trong công nghiệp sử dụng các vi xử lý 8 bit hay 16 bit như hệ thống điện của xe hơi, hệ thống điều hòa, hệ thống điều khiển các dây chuyền sản xuất, …b. Chức năng của Arduino R3:
- 2 chân Serial: 0 (RX) và 1 (TX): dùng để gửi (transmit – TX) và nhận (receive – RX) dữ liệu TTL Serial. Arduino Uno có thể giao tiếp với thiết bị khác thông qua 2 chân này. Kết nối bluetooth thường thấy nói nôm na chính là kết nối Serial không dây. Nếu không cần giao tiếp Serial, bạn không nên sử dụng 2 chân này nếu không cần thiết
- Chân PWM (~): 3, 5, 6, 9, 10, và 11: cho phép bạn xuất ra xung PWM với độ phân giải 8bit (giá trị từ 0 → 28-1 tương ứng với 0V → 5V) bằng hàm analogWrite(). Nói một cách đơn giản, bạn có thể điều chỉnh được điện áp ra ở chân này từ mức 0V đến 5V thay vì chỉ cố định ở mức 0V và 5V như những chân khác.
Các chức năng khác
- Chân giao tiếp SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Ngoài các chức năng thông thường, 4 chân này còn dùng để truyền phát dữ liệu bằng giao thức SPI với các thiết bị khác.
- LED 13: trên Arduino UNO có 1 đèn led màu cam (kí hiệu chữ L). Khi bấm nút Reset, bạn sẽ thấy đèn này nhấp nháy để báo hiệu. Nó được nối với chân số 13. Khi chân này được người dùng sử dụng, LED sẽ sáng.
- Arduino Uno R3 có 6 chân analog (A0 → A5) cung cấp độ phân giải tín hiệu 10bit (0 → 210-1) để đọc giá trị điện áp trong khoảng 0V → 5V. Với chân AREF trên board, bạn có thể để đưa vào điện áp tham chiếu khi sử dụng các chân analog. Tức là nếu bạn cấp điện áp 2.5V vào chân này thì bạn có thể dùng các chân analog để đo điện áp trong khoảng từ 0V → 2.5V với độ phân giải vẫn là 10bit. Đặc biệt, Arduino UNO có 2 chân A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.
c.Thông số kỹ thuật Arduino Uno R3 (Dip)
Datasheets | Atmega328 |
Standard Package | 27 |
Category | Integrated Circuits (ICs) |
Family | Embedded – Atmel |
Series | Atmega |
Packaging | Tube |
Core Processor | AVR |
Core Size | 8-Bit |
Speed | 16MHz |
Connectivity | I²C, SPI, UART / USART, USB |
Peripherals | Brown-out Detec t/ Reset, HLVD, POR, PWM, WDT |
Number of I /O | 14 |
Program Memory Size | 32KB |
Program Memory Type | FLASH |
EEPROM Size | 1KB |
RAM Size | 2K |
Voltage – Supply (Vcc/Vdd) | 4.2 V ~ 5.5 V |
Data Converters | A/D 6 x 10bit |
Oscillator Type | Internal |
Operating Temperature | -40°C ~ 85°C |
Package / Case | 28-SOIC (0.295″, 7.50mm Width) |
Other Names | Atmega328 |
d. Power
- LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
- VIN: Chân này dùng để cấp nguồn ngoài (điện áp cấp từ 7-12VDC).
- 5V: Điện áp ra 5V (dòng điện trên mỗi chân này tối đa là 500mA).
- 3V3: Điện áp ra 3.3V (dòng điện trên mỗi chân này tối đa là 50mA).
- GND: Là chân mang điện cực âm trên board.
- IOREF: Điệp áp hoạt động của vi điều khiển trên Arduino UNO và có thể đọc điện áp trên chân IOREF. Chân IOREF không dùng để làm chân cấp nguồn.
e.Bộ nhớ
Vi điều khiển ATmega328:- 32 KB bộ nhớ Plash: trong đó bootloader chiếm 0.5KB.
- 2 KB cho SRAM: (Static Random Access Menory): giá trị các biến khai báo sẽ được lưu ở đây. Khai báo càng nhiều biến thì càng tốn nhiều bộ nhớ RAM. Khi mất nguồn dữ liệu trên SRAM sẽ bị mất.
- 1 KB cho EEPROM: (Electrically Eraseble Programmable Read Only Memory): Là nơi có thể đọc và ghi dữ liệu vào đây và không bị mất dữ liệu khi mất nguồn.
f. Các chân đầu vào và đầu ra
Trên Board Arduino Uno có 14 chân Digital được sử dụng để làm chân đầu vào và đầu ra và chúng sử dụng các hàm pinMode(), digitalWrite(), digitalRead(). Giá trị điện áp trên mỗi chân là 5V, dòng trên mỗi chân là 20mA và bên trong có điện trở kéo lên là 20-50 ohm. Dòng tối đa trên mỗi chân I/O không vượt quá 40mA để tránh trường hợp gây hỏng board mạch. Ngoài ra, một số chân Digital có chức năng đặt biệt:- Serial: 0 (RX) và 1 (TX): Được sử dụng để nhận dữ liệu (RX) và truyền dữ liệu (TX) TTL.
- Ngắt ngoài: Chân 2 và 3.
- PWM: 3, 5, 6, 9 và 11 Cung cấp đầu ra xung PWM với độ phân giải 8 bit bằng hàm analogWrite ().
- SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). Các chân này hỗ trợ giao tiếp SPI bằng thư viện SPI.
- LED: Có 1 LED được tích hợp trên bảng mạch và được nối vào chân D13. Khi chân có giá trị mức cao (HIGH) thì LED sẽ sáng và LED tắt khi ở mức thấp (LOW).
- TWI/I2C: A4 (SDA) và A5 (SCL) hỗ trợ giao tiếp I2C/TWI với các thiết bị khác.
1.2 Cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino
a. Giới thiệu
- Cảm biến nhịp tim dạng quang Pulse Sensor sử dụng nguyên lý đo nhịp tim bằng ánh sáng với kích thước nhỏ gọn và giao tiếp Analog rất dễ sử dụng, phù hợp cho các ứng dụng điện tử y sinh.
- Nhịp đập của tim là thông số rất quan trọng xây dựng 1 bài tập thể dục thật sự khoa học. Trước đây, cảm biến nhịp tim chỉ thường xuất hiện trên các thiết bị đắt tiền như : máy chạy bộ, máy đo trong bệnh viện, smartphone,..v.v.v….
- Giờ đây đã xuất hiện 1 loại cảm biến đo nhịp tim mà chúng ta dễ dàng kết nối với các bo mạch điện tử như Arduino, Raspberry Pi và các MCU khác.
b. Thông số kỹ thuật
- Nguồn : 3 – 5V
- Dòng tiêu thụ : < 4mA
- Ngõ ra : Analog.
- Độ dài dây : 61cm ( 24 inch).
- Đường kính cảm biến : 1.6 cm ( 0.625 inch).
c. Nguyên lý hoạt động
Khi áp chặt mặt cảm biến vào da, nơi có mạch máu chảy( thường là áp vào tai, đầu ngón tay,… để dễ kẹp) đầu phát sẽ phát ra ánh sáng đi vào trong da. Dòng ánh sáng đó sẽ bị khuếch tán ra xung quanh, và một phần đi tới quang trở đặt gần đầu phát. Do bị ép vào nên lượng máu ở phần cảm biến sẽ thay đổi, cụ thể khi không có áp lực do tim đập, máu sẽ dồn ra xung quanh, lượng ánh sáng từ đầu phát sẽ về đầu thu nhiều hơn so với khi tim đập, máu chảy qua nơi có cảm biến áp vào. Sự thay đổi là rất nhỏ, nên phần cảm nhận ánh sáng (quang trở) thường có mạch IC đề khuếch đại tín hiệu thay đổi này, đưa về các mạch lọc, đếm hoặc các mạch ADC để tính toán ra nhịp tim. Tín hiệu đầu ra là tín hiệu analog, dao động theo các mạch đập của tim.d. Cấu tạo
Gồm 2 thành phần là một đầu phát quang là bóng hồng ngoại (bước sóng 609nm), và một quang trở nhạy với bước sóng ánh sáng mà đầu phát phát ra.e. Ứng dụng
- Nhịp đập của tim là thông số rất quan trọng xây dựng 1 bài tập thể dục thật sự khoa học. Trước đây, cảm biến nhịp tim chỉ thường xuất hiện trên các thiết bị đắt tiền như : máy chạy bộ, máy đo trong bệnh viện, smartphone,..v.v.v…. Giờ đây đã xuất hiện 1 loại cảm biến đo nhịp tim mà chúng ta dễ dàng kết nối với các bo mạch điện tử như Arduino, Raspberry Pi và các MCU khác.
- Cảm biến nhịp tim dạng quang Pulse Sensor sử dụng nguyên lý đo nhịp tim bằng ánh sáng với kích thước nhỏ gọn và giao tiếp Analog rất dễ sử dụng, phù hợp cho các ứng dụng điện tử y sinh.
1.3 LCD 1602 cho mạch đọc cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino
a. Giới thiệu
Màn hình text LCD1602 xanh lá sử dụng driver HD44780, có khả năng hiển thị 2 dòng với mỗi dòng 16 ký tự, màn hình có độ bền cao, rất phổ biến, nhiều code mẫu và dễ sử dụng thích hợp cho những người mới học và làm dự án.
Trong 16 chân của LCD được chia ra làm 3 dạng tín hiệu như sau:
b. Thông số kỹ thuật
- Điện áp hoạt động là 5 V.
- Kích thước: 80 x 36 x 12.5 mm
- Chữ đen, nền xanh lá
- Khoảng cách giữa hai chân kết nối là 0.1 inch tiện dụng khi kết nối với Breadboard.
- Tên các chân được ghi ở mặt sau của màn hình LCD hổ trợ việc kết nối, đi dây điện.
- Có đèn led nền, có thể dùng biến trở hoặc PWM điều chình độ sáng để sử dụng ít điện năng hơn.
- Có thể được điều khiển với 6 dây tín hiệu
- Có bộ ký tự được xây dựng hổ trợ tiếng Anh và tiếng Nhật, xem thêm HD44780 datasheet để biết thêm chi tiết.
c. Sơ đồ chân LCD 16×2
Số chân | Ký hiệu chân | Mô tả chân |
1 | Vss | Cấp điện 0v |
2 | Vcc | Cấp điện 5v |
3 | V0 | Chỉnh độ tương phản |
4 | RS | Lựa chọn thanh ghi địa chỉ hay dữ liệu |
5 | RW | Lựa chọn thanh ghi Đọc hay Viết |
6 | EN | Cho phép xuất dữ liệu |
7 | D0 | Đường truyền dữ liệu 0 |
8 | D1 | Đường truyền dữ liệu 1 |
9 | D2 | Đường truyền dữ liệu 2 |
10 | D3 | Đường truyền dữ liệu 3 |
11 | D4 | Đường truyền dữ liệu 4 |
12 | D5 | Đường truyền dữ liệu 5 |
13 | D6 | Đường truyền dữ liệu 6 |
14 | D7 | Đường truyền dữ liệu 7 |
15 | A | Chân dương đèn màn hình |
16 | K | Chân âm đèn màn hình |
- Các chân cấp nguồn: Chân số 1 là chân nối mass (0V), chân thứ 2 là Vdd nối với nguồn+5V. Chân thứ 3 dùng để chỉnh contrast thường nối với biến trở.
- Các chân điều khiển: Chân số 4 là chân RS dùng để điều khiển lựa chọn thanh ghi. ChânR/W dùng để điều khiển quá trình đọc và ghi. Chân E là chân cho phép dạng xung chốt.
- Các chân dữ liệu D7÷D0: Chân số 7 đến chân số 14 là 8 chân dùng để trao đổi dữ liệu giữa thiết bị điều khiển và LCD.
d. Địa chỉ ba vùng nhớ
- Bộ điều khiển LCD có ba vùng nhớ nội, mỗi vùng có chức năng riêng. Bộ điều khiển phải khởi động trước khi truy cập bất kỳ vùng nhớ nào. a. Bộ nhớ DDRAM
- Bộ nhớ chứa dữ liệu để hiển thị (Display Data RAM: DDRAM) lưu trữ những mã ký tự để hiển thị lên màn hình. Mã ký tự lưu trữ trong vùng DDRAM sẽ tham chiếu với từng bitmap kí tự được lưu trữ trong CGROM đã được định nghĩa trước hoặc đặt trong vùng do người sử dụng định nghĩa. b. Bộ phát kí tự ROM – CGROM
- Bộ phát kí tự ROM (Character Generator ROM: CGROM) chứa các kiểu bitmap cho mỗi kí tự được định nghĩa trước mà LCD có thể hiển thị, như được trình bày bảng mã ASCII. Mã kí tự lưu trong DDRAM cho mỗi vùng kí tự sẽ được tham chiếu đến một vị trí trong CGROM. Ví dụ: mã kí tự số hex 0x53 lưu trong DDRAM được chuyển sang dạng nhị phân 4 bit cao là DB[7:4] = “0101” và 4 bit thấp là DB[3:0] = “0011” chính là kí tự chữ ‘S’ sẽ hiển thị trên màn hình LCD. c. Bộ phát kí tự RAM – CGRAM
- Bộ phát kí tự RAM (Character Generator RAM: CG RAM) cung cấp vùng nhớ để tạo ra 8 kí tự tùy ý. Mỗi kí tự gồm 5 cột và 8 hàng.
e. Các lệnh điều khiển của LCD
- Lệnh thiết lập chức năng giao tiếp “Function set”:
- Bit DL (data length) = 1 thì cho phép giao tiếp 8 đường data D7 ÷ D0, nếu bằng 0 thì cho phép giao tiếp 4 đường D7 ÷ D4.
- Bit N (number of line) = 1 thì cho phép hiển thị 2 hàng, nếu bằng 0 thì cho phép hiển thị 1 hàng.
- Bit F (font) = 1 thì cho phép hiển thị với ma trận 5×8, nếu bằng 0 thì cho phép hiển thị với ma trận 5×11.
- Các bit cao còn lại là hằng số không đổi.
Lệnh xoá màn hình “Clear Display”: khi thực hiện lệnh này thì LCD sẽ bị xoá và bộ đếm địa chỉ được xoá về 0.
- Lệnh di chuyển con trỏ về đầu màn hình “Cursor Home”: khi thực hiện lệnh này thì bộ đếm địa chỉ được xoá về 0, phần hiển thị trở về vị trí gốc đã bị dịch trước đó. Nội dung bộ nhớ RAM hiển thị DDRAM không bị thay đổi.
- Lệnh thiết lập lối vào “Entry mode set”: lệnh này dùng để thiết lập lối vào cho các kí tự hiển thị,
- Bit I/D = 1 thì con trỏ tự động tăng lên 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị, khi I/D = 0 thì con trỏ sẽ tự động giảm đi 1 mỗi khi có 1 byte dữ liệu ghi vào bộ hiển thị.
- Bit S = 1 thì cho phép dịch chuyển dữ liệu mỗi khi nhận 1 byte hiển thị.
Lệnh điều khiển con trỏ hiển thị “Display Control”:
- Bit D: cho phép LCD hiển thị thì D = 1, không cho hiển thị thì bit D = 0.
- Bit C: cho phép con trỏ hiển thị thì C= 1, không cho hiển thị con trỏ thì bit C = 0.
- Bit B: cho phép con trỏ nhấp nháy thì B= 1, không cho con trỏ nhấp nháy thì bit B = 0.
- Với các bit như trên thì để hiển thị phải cho D = 1, 2 bit còn lại thì tùy chọn, trong thư viện thì cho 2 bit đều bằng 0, không cho phép mở con trỏ và nhấp nháy, nếu bạn không thích thì hiệu chỉnh lại.
- Lệnh di chuyển con trỏ “Cursor /Display Shift”: lệnh này dùng để điều khiển di chuyển con trỏ hiển thị dịch chuyển
- Bit SC: SC = 1 cho phép dịch chuyển, SC = 0 thì không cho phép.
- Bit RL xác định hướng dịch chuyển: RL = 1 thì dịch phải, RL = 0 thì dịch trái. Nội dung bộ nhớ DDRAM vẫn không đổi.
- Vậy khi cho phép dịch thì có 2 tùy chọn: dịch trái và dịch phải.
- Lệnh thiết lập địa chỉ cho bộ nhớ RAM phát kí tự “Set CGRAM Addr”: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM phát kí tự.
- Lệnh thiết lập địa chỉ cho bộ nhớ RAM hiển thị “Set DDRAM Addr”: lệnh này dùng để thiết lập địa chỉ cho bộ nhớ RAM lưu trữ các dữ liệu hiển thị.
- Hai lệnh cuối cùng là lệnh đọc và lệnh ghi dữ liệu LCD.
f. Bảng mã ASCII sử dụng cho LCD
g. Bảng địa chỉ cho LCD
2. Hướng dẫn đồ án cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino hiển thị LCD1602
Phần này chưa được chia sẻ.
LIÊN HỆ thông tin ở TẠI ĐÂY để được hổ trợ tốt hơn.
Phần cứng
Phần mềm
#include <LiquidCrystal.h> const int rs = 12, en = 11, d4 = 5, d5 = 4, d6 = 3, d7 = 2; LiquidCrystal lcd(12, 11, 5, 4, 3, 2); int pulsePin = A0; // Pulse Sensor purple wire connected to analog pin A0 int blinkPin = 13; // pin to blink led at each beat // Volatile Variables, used in the interrupt service routine! volatile int BPM; // int that holds raw Analog in 0. updated every 2mS volatile int Signal; // holds the incoming raw data volatile int IBI = 600; // int that holds the time interval between beats! Must be seeded! volatile boolean Pulse = false; // "True" when User's live heartbeat is detected. "False" when not a "live beat". volatile boolean QS = false; // becomes true when Arduoino finds a beat. static boolean serialVisual = true; // Set to 'false' by Default. Re-set to 'true' to see Arduino Serial Monitor ASCII Visual Pulse volatile int rate[10]; // array to hold last ten IBI values volatile unsigned long sampleCounter = 0; // used to determine pulse timing volatile unsigned long lastBeatTime = 0; // used to find IBI volatile int P = 512; // used to find peak in pulse wave, seeded volatile int T = 512; // used to find trough in pulse wave, seeded volatile int thresh = 525; // used to find instant moment of heart beat, seeded volatile int amp = 100; // used to hold amplitude of pulse waveform, seeded volatile boolean firstBeat = true; // used to seed rate array so we startup with reasonable BPM volatile boolean secondBeat = false; // used to seed rate array so we startup with reasonable BPM void setup() { pinMode(blinkPin,OUTPUT); // pin that will blink to your heartbeat! Serial.begin(115200); // we agree to talk fast! interruptSetup(); // sets up to read Pulse Sensor signal every 2mS // IF YOU ARE POWERING The Pulse Sensor AT VOLTAGE LESS THAN THE BOARD VOLTAGE, // UN-COMMENT THE NEXT LINE AND APPLY THAT VOLTAGE TO THE A-REF PIN // analogReference(EXTERNAL); lcd.begin(16, 2); lcd.clear(); } // Where the Magic Happens void loop() { serialOutput(); if (QS == true) // A Heartbeat Was Found { // BPM and IBI have been Determined // Quantified Self "QS" true when arduino finds a heartbeat serialOutputWhenBeatHappens(); // A Beat Happened, Output that to serial. QS = false; // reset the Quantified Self flag for next time } delay(20); // take a break } void interruptSetup() { // Initializes Timer2 to throw an interrupt every 2mS. TCCR2A = 0x02; // DISABLE PWM ON DIGITAL PINS 3 AND 11, AND GO INTO CTC MODE TCCR2B = 0x06; // DON'T FORCE COMPARE, 256 PRESCALER OCR2A = 0X7C; // SET THE TOP OF THE COUNT TO 124 FOR 500Hz SAMPLE RATE TIMSK2 = 0x02; // ENABLE INTERRUPT ON MATCH BETWEEN TIMER2 AND OCR2A sei(); // MAKE SURE GLOBAL INTERRUPTS ARE ENABLED } void serialOutput() { // Decide How To Output Serial. if (serialVisual == true) { arduinoSerialMonitorVisual('-', Signal); // goes to function that makes Serial Monitor Visualizer } else { sendDataToSerial('S', Signal); // goes to sendDataToSerial function } } void serialOutputWhenBeatHappens() { if (serialVisual == true) // Code to Make the Serial Monitor Visualizer Work { Serial.print(" Heart-Beat Found "); //ASCII Art Madness Serial.print("BPM: "); Serial.println(BPM); lcd.print("Heart-Beat Found "); lcd.setCursor(1,1); lcd.print("BPM: "); lcd.setCursor(5,1); lcd.print(BPM); delay(300); lcd.clear(); } else { sendDataToSerial('B',BPM); // send heart rate with a 'B' prefix sendDataToSerial('Q',IBI); // send time between beats with a 'Q' prefix } } void arduinoSerialMonitorVisual(char symbol, int data ) { const int sensorMin = 0; // sensor minimum, discovered through experiment const int sensorMax = 1024; // sensor maximum, discovered through experiment int sensorReading = data; // map the sensor range to a range of 12 options: int range = map(sensorReading, sensorMin, sensorMax, 0, 11); // do something different depending on the // range value: } void sendDataToSerial(char symbol, int data ) { Serial.print(symbol); Serial.println(data); } ISR(TIMER2_COMPA_vect) //triggered when Timer2 counts to 124 { cli(); // disable interrupts while we do this Signal = analogRead(pulsePin); // read the Pulse Sensor sampleCounter += 2; // keep track of the time in mS with this variable int N = sampleCounter - lastBeatTime; // monitor the time since the last beat to avoid noise // find the peak and trough of the pulse wave if(Signal < thresh && N > (IBI/5)*3) // avoid dichrotic noise by waiting 3/5 of last IBI { if (Signal < T) // T is the trough { T = Signal; // keep track of lowest point in pulse wave } } if(Signal > thresh && Signal > P) { // thresh condition helps avoid noise P = Signal; // P is the peak } // keep track of highest point in pulse wave // NOW IT'S TIME TO LOOK FOR THE HEART BEAT // signal surges up in value every time there is a pulse if (N > 250) { // avoid high frequency noise if ( (Signal > thresh) && (Pulse == false) && (N > (IBI/5)*3) ) { Pulse = true; // set the Pulse flag when we think there is a pulse digitalWrite(blinkPin,HIGH); // turn on pin 13 LED IBI = sampleCounter - lastBeatTime; // measure time between beats in mS lastBeatTime = sampleCounter; // keep track of time for next pulse if(secondBeat) { // if this is the second beat, if secondBeat == TRUE secondBeat = false; // clear secondBeat flag for(int i=0; i<=9; i++) // seed the running total to get a realisitic BPM at startup { rate[i] = IBI; } } if(firstBeat) // if it's the first time we found a beat, if firstBeat == TRUE { firstBeat = false; // clear firstBeat flag secondBeat = true; // set the second beat flag sei(); // enable interrupts again return; // IBI value is unreliable so discard it } // keep a running total of the last 10 IBI values word runningTotal = 0; // clear the runningTotal variable for(int i=0; i<=8; i++) { // shift data in the rate array rate[i] = rate[i+1]; // and drop the oldest IBI value runningTotal += rate[i]; // add up the 9 oldest IBI values } rate[9] = IBI; // add the latest IBI to the rate array runningTotal += rate[9]; // add the latest IBI to runningTotal runningTotal /= 10; // average the last 10 IBI values BPM = 60000/runningTotal; // how many beats can fit into a minute? that's BPM! QS = true; // set Quantified Self flag // QS FLAG IS NOT CLEARED INSIDE THIS ISR } } if (Signal < thresh && Pulse == true) { // when the values are going down, the beat is over digitalWrite(blinkPin,LOW); // turn off pin 13 LED Pulse = false; // reset the Pulse flag so we can do it again amp = P - T; // get amplitude of the pulse wave thresh = amp/2 + T; // set thresh at 50% of the amplitude P = thresh; // reset these for next time T = thresh; } if (N > 2500) { // if 2.5 seconds go by without a beat thresh = 512; // set thresh default P = 512; // set P default T = 512; // set T default lastBeatTime = sampleCounter; // bring the lastBeatTime up to date firstBeat = true; // set these to avoid noise secondBeat = false; // when we get the heartbeat back } sei(); // enable interrupts when youre done! }// end isr
3. Hoạt động của mạch đọc cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino
Khi cấp điện hệ thống hoạt động, vi điều khiển hiển thị thông tin ban đầu. Lúc này vi điều khiển chờ tín hiệu từ cảm biến nhịp tim trả về. Khi nhận được tín hiệu vi điều khiển xử lý và xuất giá trị cảm biến nhịp ra LCD theo đơn vị BPM.4. Cụ thể hoạt động của mạch đọc cảm biến nhịp tim quang Pulse Sensor giao tiếp Arduino:
Ngoài ra còn nhiều Phần và các môn khác
Đồ án điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 1 Mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 2 Thiết kế mạch điện tử, Lập trình vi điều khiển tổng hợp File đồ án – Phần 3 Vi xử lý, Lập trình vi điều khiển Pic – 8051 – Avr – Phần 4 Tổng hợp File ĐỒ ÁN Điện tử cơ bản Tổng hợp File ĐỒ ÁN Viễn thông Tổng hợp File ĐỒ ÁN PLC Tổng hợp File ĐỒ ÁN Cung cấp điện
Sẽ còn các phần khác nữa nhé.
Chúc các bạn thành công…!!!